Cortical Activation Patterns Correlate with Speech Understanding After Cochlear Implantation.

Cristen Olds, Luca Pollonini, Homer Abaya, Jannine Larky, Megan Loy, Heather Bortfeld, Michael S Beauchamp, John S Oghalai
Author Information
  1. Cristen Olds: 1Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California, USA; 2Department of Engineering Technology and Abramson Center for the Future of Health, University of Houston, Houston, Texas, USA; 3Department of Psychological Sciences, University of California, Merced, Merced, California, USA; and 4Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA.

Abstract

OBJECTIVES: Cochlear implants are a standard therapy for deafness, yet the ability of implanted patients to understand speech varies widely. To better understand this variability in outcomes, the authors used functional near-infrared spectroscopy to image activity within regions of the auditory cortex and compare the results to behavioral measures of speech perception.
DESIGN: The authors studied 32 deaf adults hearing through cochlear implants and 35 normal-hearing controls. The authors used functional near-infrared spectroscopy to measure responses within the lateral temporal lobe and the superior temporal gyrus to speech stimuli of varying intelligibility. The speech stimuli included normal speech, channelized speech (vocoded into 20 frequency bands), and scrambled speech (the 20 frequency bands were shuffled in random order). The authors also used environmental sounds as a control stimulus. Behavioral measures consisted of the speech reception threshold, consonant-nucleus-consonant words, and AzBio sentence tests measured in quiet.
RESULTS: Both control and implanted participants with good speech perception exhibited greater cortical activations to natural speech than to unintelligible speech. In contrast, implanted participants with poor speech perception had large, indistinguishable cortical activations to all stimuli. The ratio of cortical activation to normal speech to that of scrambled speech directly correlated with the consonant-nucleus-consonant words and AzBio sentences scores. This pattern of cortical activation was not correlated with auditory threshold, age, side of implantation, or time after implantation. Turning off the implant reduced the cortical activations in all implanted participants.
CONCLUSIONS: Together, these data indicate that the responses the authors measured within the lateral temporal lobe and the superior temporal gyrus correlate with behavioral measures of speech perception, demonstrating a neural basis for the variability in speech understanding outcomes after cochlear implantation.

References

  1. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):E505-14 [PMID: 22308358]
  2. Hear Res. 2000 May;143(1-2):139-46 [PMID: 10771191]
  3. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4846-51 [PMID: 23440196]
  4. Otol Neurotol. 2009 Jun;30(4):449-54 [PMID: 19415041]
  5. Cochlear Implants Int. 2013 Jun;14(3):121-9 [PMID: 23540588]
  6. PLoS Biol. 2012 Jan;10(1):e1001251 [PMID: 22303281]
  7. Laryngoscope. 2005 Sep;115(9):1568-73 [PMID: 16148696]
  8. Hear Res. 2015 Apr;322:4-13 [PMID: 25159273]
  9. J Am Acad Audiol. 2012 Sep;23(8):635-66 [PMID: 22967738]
  10. Neuroreport. 2005 Dec 19;16(18):2041-5 [PMID: 16317351]
  11. Laryngoscope. 2010 Feb;120(2):399-404 [PMID: 19950369]
  12. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11843-9 [PMID: 11050218]
  13. Pediatrics. 2015 Jul;136(1):141-53 [PMID: 26055845]
  14. Int J Audiol. 2010 Apr;49(4):277-85 [PMID: 20151878]
  15. Hear Res. 2012 Feb;284(1-2):6-15 [PMID: 22234161]
  16. Neuroimage. 2013 Nov 15;82:500-9 [PMID: 23751864]
  17. Neuroimage. 2010 Apr 15;50(3):1202-11 [PMID: 20096790]
  18. Otol Neurotol. 2014 Apr;35(4):598-604 [PMID: 24557031]
  19. Front Hum Neurosci. 2011 Mar 18;5:28 [PMID: 21442013]
  20. Front Neurosci. 2014 Aug 11;8:240 [PMID: 25157216]
  21. Neuroimage. 1995 Mar;2(1):45-53 [PMID: 9343589]
  22. Ear Hear. 2010 Aug;31(4):480-90 [PMID: 20588118]
  23. Neuroimage. 2011 Feb 14;54(4):2808-21 [PMID: 21047559]
  24. Adv Otorhinolaryngol. 2011;70:28-36 [PMID: 21358182]
  25. Neurosci Lett. 1993 May 14;154(1-2):101-4 [PMID: 8361619]
  26. Science. 2014 Feb 28;343(6174):978-9 [PMID: 24578570]
  27. Science. 1995 Oct 13;270(5234):303-4 [PMID: 7569981]
  28. Pediatr Res. 2001 Feb;49(2):213-9 [PMID: 11158516]
  29. Hum Brain Mapp. 2014 Jul;35(7):3107-21 [PMID: 24123535]
  30. J Am Acad Audiol. 2014 Jul-Aug;25(7):656-65 [PMID: 25365368]
  31. Hear Res. 2005 Jul;205(1-2):184-92 [PMID: 15953527]
  32. JAMA. 1995 Dec 27;274(24):1955-61 [PMID: 8568992]
  33. Hear Res. 2010 Dec 1;270(1-2):39-47 [PMID: 20888894]
  34. Otol Neurotol. 2012 Aug;33(6):947-56 [PMID: 22710555]
  35. Neuroimage. 2007 Jan 1;34(1):407-15 [PMID: 17045812]
  36. PLoS One. 2014;9(3):e92454 [PMID: 24651081]
  37. Arch Dis Child Fetal Neonatal Ed. 2008 Nov;93(6):F462-8 [PMID: 18941031]
  38. J Biomed Opt. 2005 Jul-Aug;10(4):44001 [PMID: 16178635]
  39. Hear Res. 2014 Mar;309:84-93 [PMID: 24342740]
  40. Lancet. 2005 Sep 24-30;366(9491):1111-20 [PMID: 16182900]
  41. Ear Hear. 2013 May-Jun;34(3):342-60 [PMID: 23348845]
  42. Ear Hear. 2002 Dec;23(6):516-31 [PMID: 12476089]
  43. Otol Neurotol. 2011 Feb;32(2):259-64 [PMID: 21131880]
  44. Ear Hear. 2004 Aug;25(4):361-74 [PMID: 15292776]
  45. Science. 2014 Feb 28;343(6174):1006-10 [PMID: 24482117]
  46. PLoS One. 2011;6(9):e24981 [PMID: 21957470]
  47. Ear Hear. 2012 Jan-Feb;33(1):112-7 [PMID: 21829134]
  48. Neuroimage. 2014 Jan 15;85 Pt 1:6-27 [PMID: 23684868]
  49. J Speech Hear Disord. 1962 Feb;27:62-70 [PMID: 14485785]
  50. Audiol Neurootol. 2008;13(3):193-205 [PMID: 18212519]
  51. PLoS One. 2014;9(2):e90594 [PMID: 24587400]
  52. Int J Audiol. 2005 Mar;44(3):131-43 [PMID: 15916114]
  53. Neuroimage. 2006 Jan 15;29(2):368-82 [PMID: 16303317]
  54. Nature. 2000 Jan 20;403(6767):309-12 [PMID: 10659849]
  55. Neurosci Lett. 2014 Aug 8;577:51-5 [PMID: 24946164]
  56. J Assoc Res Otolaryngol. 2015 Jun;16(3):389-99 [PMID: 25790949]
  57. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3-6 [PMID: 10590970]
  58. Laryngoscope. 2013 Aug;123(8):1952-6 [PMID: 23737286]
  59. Hear Res. 2011 May;275(1-2):17-29 [PMID: 21129468]
  60. Ear Hear. 2014 Jul-Aug;35(4):418-22 [PMID: 24658601]
  61. Cereb Cortex. 2014 Oct;24(10):2541-52 [PMID: 23645712]
  62. Hear Res. 2013 Aug;302:84-95 [PMID: 23727626]
  63. Audiology. 1999 Mar-Apr;38(2):109-16 [PMID: 10206520]
  64. Sci Rep. 2014;4:4740 [PMID: 24751935]
  65. Neuroimage. 2004 Nov;23(3):840-8 [PMID: 15528084]
  66. J Am Geriatr Soc. 2011 Mar;59(3):446-53 [PMID: 21361884]
  67. Brain Res Cogn Brain Res. 2002 Feb;13(1):17-26 [PMID: 11867247]
  68. Cochlear Implants Int. 2002 Mar;3(1):29-53 [PMID: 18792110]
  69. Phys Med Biol. 2003 Aug 21;48(16):2713-27 [PMID: 12974584]
  70. Neuron. 2013 Feb 20;77(4):750-61 [PMID: 23439126]
  71. Cereb Cortex. 2009 Mar;19(3):576-85 [PMID: 18603609]
  72. Phys Med Biol. 2004 Jul 21;49(14):N255-7 [PMID: 15357206]
  73. Trends Cogn Sci. 2004 Mar;8(3):129-35 [PMID: 15301753]

Grants

  1. R01 DC010075/NIDCD NIH HHS
  2. R01 NS065395/NINDS NIH HHS
  3. R56 DC010164/NIDCD NIH HHS

MeSH Term

Adult
Aged
Aged, 80 and over
Auditory Cortex
Case-Control Studies
Cochlear Implantation
Cochlear Implants
Comprehension
Deafness
Female
Functional Neuroimaging
Humans
Male
Middle Aged
Spectroscopy, Near-Infrared
Speech Perception
Temporal Lobe
Young Adult

Word Cloud

Created with Highcharts 10.0.0speechauthorscorticalimplantedperceptiontemporalusedwithinmeasuresstimuliparticipantsactivationsimplantationCochlearimplantsunderstandvariabilityoutcomesfunctionalnear-infraredspectroscopyauditorybehavioralcochlearresponseslaterallobesuperiorgyrusnormal20frequencybandsscrambledcontrolthresholdconsonant-nucleus-consonantwordsAzBiomeasuredactivationcorrelatedOBJECTIVES:standardtherapydeafnessyetabilitypatientsvarieswidelybetterimageactivityregionscortexcompareresultsDESIGN:studied32deafadultshearing35normal-hearingcontrolsmeasurevaryingintelligibilityincludedchannelizedvocodedshuffledrandomorderalsoenvironmentalsoundsstimulusBehavioralconsistedreceptionsentencetestsquietRESULTS:goodexhibitedgreaternaturalunintelligiblecontrastpoorlargeindistinguishableratiodirectlysentencesscorespatternagesidetimeTurningimplantreducedCONCLUSIONS:TogetherdataindicatecorrelatedemonstratingneuralbasisunderstandingCorticalActivationPatternsCorrelateSpeechUnderstandingImplantation

Similar Articles

Cited By