Robust Bayesian hierarchical model using normal/independent distributions.

Geng Chen, Sheng Luo
Author Information
  1. Geng Chen: Clinical Statistics, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA, 19426, USA.
  2. Sheng Luo: Department of Biostatistics, The University of Texas Health Science Center at Houston, 1200 Pressler St, Houston, TX, 77030, USA.

Abstract

The multilevel item response theory (MLIRT) models have been increasingly used in longitudinal clinical studies that collect multiple outcomes. The MLIRT models account for all the information from multiple longitudinal outcomes of mixed types (e.g., continuous, binary, and ordinal) and can provide valid inference for the overall treatment effects. However, the continuous outcomes and the random effects in the MLIRT models are often assumed to be normally distributed. The normality assumption can sometimes be unrealistic and thus may produce misleading results. The normal/independent (NI) distributions have been increasingly used to handle the outlier and heavy tail problems in order to produce robust inference. In this article, we developed a Bayesian approach that implemented the NI distributions on both continuous outcomes and random effects in the MLIRT models and discussed different strategies of implementing the NI distributions. Extensive simulation studies were conducted to demonstrate the advantage of our proposed models, which provided parameter estimates with smaller bias and more reasonable coverage probabilities. Our proposed models were applied to a motivating Parkinson's disease study, the DATATOP study, to investigate the effect of deprenyl in slowing down the disease progression.

Keywords

References

  1. Contemp Clin Trials. 2009 Mar;30(2):158-70 [PMID: 19146991]
  2. Stat Med. 1999 Nov 15;18(21):2917-31 [PMID: 10523750]
  3. Stat Methods Med Res. 2007 Oct;16(5):399-415 [PMID: 17656454]
  4. Biom J. 2013 Nov;55(6):844-65 [PMID: 23907983]
  5. Mov Disord. 2011 Apr;26(5):877-84 [PMID: 21370269]
  6. Mov Disord. 2012 Oct;27(12):1513-21 [PMID: 23079770]
  7. Arch Neurol. 1989 Oct;46(10):1052-60 [PMID: 2508608]
  8. Stat Methods Med Res. 2011 Aug;20(4):299-330 [PMID: 20212072]
  9. Annu Rev Clin Psychol. 2009;5:27-48 [PMID: 18976138]
  10. JAMA Neurol. 2014 Apr;71(4):499-504 [PMID: 24514863]
  11. J Clin Epidemiol. 2010 May;63(5):543-9 [PMID: 19880281]
  12. Biometrics. 2005 Jun;61(2):532-9 [PMID: 16011701]
  13. Stat Med. 2000 Jun 15-30;19(11-12):1631-44 [PMID: 10844724]
  14. Stat Methods Med Res. 2016 Aug;25(4):1346-58 [PMID: 23592717]
  15. N Engl J Med. 2004 Dec 9;351(24):2498-508 [PMID: 15590952]
  16. Neurology. 2000 Sep 26;55(6):888-91 [PMID: 10994019]
  17. Biometrics. 2011 Mar;67(1):270-9 [PMID: 20528860]
  18. Am J Psychiatry. 1992 Apr;149(4):443-54 [PMID: 1372794]
  19. Mov Disord. 2000 Mar;15(2):335-6 [PMID: 10752588]
  20. Dement Geriatr Cogn Disord. 2011;32(5):362-6 [PMID: 22311305]
  21. Multivariate Behav Res. 2004 Oct 1;39(4):653-86 [PMID: 26745462]
  22. Qual Life Res. 1999 Jun;8(4):345-50 [PMID: 10472167]
  23. Biostatistics. 2000 Dec;1(4):465-80 [PMID: 12933568]
  24. Biometrics. 1996 Dec;52(4):1324-33 [PMID: 8962456]
  25. Stat Med. 2013 Sep 30;32(22):3812-28 [PMID: 23494809]
  26. Mov Disord. 2009 Sep 15;24(12):1732-9 [PMID: 19514076]
  27. Alzheimer Dis Assoc Disord. 2012 Oct-Dec;26(4):344-51 [PMID: 22193355]
  28. Stat Med. 2002 Jan 15;21(1):129-42 [PMID: 11782055]
  29. N Engl J Med. 1993 Jan 21;328(3):176-83 [PMID: 8417384]
  30. Stat Methods Med Res. 2016 Apr;25(2):821-37 [PMID: 23242384]
  31. Biometrics. 2011 Dec;67(4):1594-604 [PMID: 21504417]
  32. Control Clin Trials. 2000 Jun;21(3):167-89 [PMID: 10822117]

Grants

  1. KL2 TR000370/NCATS NIH HHS
  2. R01 NS091307/NINDS NIH HHS
  3. U01 NS043127/NINDS NIH HHS

MeSH Term

Bayes Theorem
Biometry
Disease Progression
Humans
Longitudinal Studies
Models, Statistical
Normal Distribution
Parkinson Disease
Selegiline

Chemicals

Selegiline

Word Cloud

Created with Highcharts 10.0.0modelsMLIRToutcomesdistributionscontinuouseffectsNItheoryincreasinglyusedlongitudinalstudiesmultiplecaninferencerandomproducenormal/independentBayesianproposeddiseasestudymultilevelitemresponseclinicalcollectaccountinformationmixedtypesegbinaryordinalprovidevalidoveralltreatmentHoweveroftenassumednormallydistributednormalityassumptionsometimesunrealisticthusmaymisleadingresultshandleoutlierheavytailproblemsorderrobustarticledevelopedapproachimplementeddiscusseddifferentstrategiesimplementingExtensivesimulationconducteddemonstrateadvantageprovidedparameterestimatessmallerbiasreasonablecoverageprobabilitiesappliedmotivatingParkinson'sDATATOPinvestigateeffectdeprenylslowingprogressionRobusthierarchicalmodelusingClinicaltrialItem-responseLatentvariableMCMCOutliers

Similar Articles

Cited By