Metagenomic and satellite analyses of red snow in the Russian Arctic.

Nao Hisakawa, Steven D Quistad, Eric R Hester, Daria Martynova, Heather Maughan, Enric Sala, Maria V Gavrilo, Forest Rohwer
Author Information
  1. Nao Hisakawa: Department of Biology, San Diego State University , San Diego, CA , United States.
  2. Steven D Quistad: Department of Biology, San Diego State University , San Diego, CA , United States.
  3. Eric R Hester: Department of Biology, San Diego State University , San Diego, CA , United States ; Department of Microbiology, Radboud University Nijmegen , Nijmegen , Netherlands.
  4. Daria Martynova: White Sea Biological Station, Zoological Institute, Russian Academy of Sciences , St. Petersburg , Russia ; National Park Russian Arctic , Archangelsk , Russia.
  5. Heather Maughan: Ronin Institute , Montclair, NJ , United States.
  6. Enric Sala: National Geographic Society , Washington, DC , United States.
  7. Maria V Gavrilo: National Park Russian Arctic , Archangelsk , Russia.
  8. Forest Rohwer: Department of Biology, San Diego State University , San Diego, CA , United States.

Abstract

Cryophilic algae thrive in liquid water within snow and ice in alpine and polar regions worldwide. Blooms of these algae lower albedo (reflection of sunlight), thereby altering melting patterns (Kohshima, Seko & Yoshimura, 1993; Lutz et al., 2014; Thomas & Duval, 1995). Here metagenomic DNA analysis and satellite imaging were used to investigate red snow in Franz Josef Land in the Russian Arctic. Franz Josef Land red snow metagenomes confirmed that the communities are composed of the autotroph Chlamydomonas nivalis that is supporting a complex viral and heterotrophic bacterial community. Comparisons with white snow communities from other sites suggest that white snow and ice are initially colonized by fungal-dominated communities and then succeeded by the more complex C. nivalis-heterotroph red snow. Satellite image analysis showed that red snow covers up to 80% of the surface of snow and ice fields in Franz Josef Land and globally. Together these results show that C. nivalis supports a local food web that is on the rise as temperatures warm, with potential widespread impacts on alpine and polar environments worldwide.

Keywords

References

  1. PLoS One. 2011 Mar 09;6(3):e17288 [PMID: 21408061]
  2. PLoS Biol. 2015 Aug 18;13(8):e1002226 [PMID: 26284777]
  3. Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):562-6 [PMID: 12518048]
  4. Front Microbiol. 2014 Aug 07;5:413 [PMID: 25147550]
  5. FEMS Microbiol Ecol. 2014 Aug;89(2):402-14 [PMID: 24920320]
  6. Photochem Photobiol. 2003 Jun;77(6):608-15 [PMID: 12870846]
  7. FEMS Microbiol Ecol. 2007 Feb;59(2):265-73 [PMID: 17313577]
  8. BMC Bioinformatics. 2008 Sep 19;9:386 [PMID: 18803844]
  9. Bioinformatics. 2011 Mar 15;27(6):863-4 [PMID: 21278185]
  10. Mar Biol. 2009;156(11):2277-2287 [PMID: 24489405]
  11. ISME J. 2008 Aug;2(8):805-14 [PMID: 18615117]

Word Cloud

Created with Highcharts 10.0.0snowredFranzJosefLandiceArcticcommunitiesalgaealpinepolarworldwide&analysissatelliteRussiannivaliscomplexwhiteCCryophilicthriveliquidwaterwithinregionsBloomsloweralbedoreflectionsunlighttherebyalteringmeltingpatternsKohshimaSekoYoshimura1993Lutzetal2014ThomasDuval1995metagenomicDNAimagingusedinvestigatemetagenomesconfirmedcomposedautotrophChlamydomonassupportingviralheterotrophicbacterialcommunityComparisonssitessuggestinitiallycolonizedfungal-dominatedsucceedednivalis-heterotrophSatelliteimageshowedcovers80%surfacefieldsgloballyTogetherresultsshowsupportslocalfoodwebrisetemperatureswarmpotentialwidespreadimpactsenvironmentsMetagenomicanalysesMetagenomicsPhageRedSnowVirusesWatermelon

Similar Articles

Cited By