Coping with an exogenous glucose overload: glucose kinetics of rainbow trout during graded swimming.

Kevin Choi, Jean-Michel Weber
Author Information
  1. Kevin Choi: Biology Department, University of Ottawa, Ottawa, Ontario, Canada.
  2. Jean-Michel Weber: Biology Department, University of Ottawa, Ottawa, Ontario, Canada jmweber@uOttawa.ca.

Abstract

This study examines how chronically hyperglycemic rainbow trout modulate glucose kinetics in response to graded exercise up to critical swimming speed (Ucrit), with or without exogenous glucose supply. Our goals were 1) to quantify the rates of hepatic glucose production (Ra glucose) and disposal (Rd glucose) during graded swimming, 2) to determine how exogenous glucose affects the changes in glucose fluxes caused by exercise, and 3) to establish whether exogenous glucose modifies Ucrit or the cost of transport. Results show that graded swimming causes no change in Ra and Rd glucose at speeds below 2.5 body lengths per second (BL/s), but that glucose fluxes may be stimulated at the highest speeds. Excellent glucoregulation is also achieved at all exercise intensities. When exogenous glucose is supplied during exercise, trout suppress hepatic production from 16.4 ± 1.6 to 4.1 ± 1.7 μmol·kg(-1)·min(-1) and boost glucose disposal to 40.1 ± 13 μmol·kg(-1)·min(-1). These responses limit the effects of exogenous glucose to a 2.5-fold increase in glycemia, whereas fish showing no modulation of fluxes would reach dangerous levels of 114 mM of blood glucose. Exogenous glucose reduces metabolic rate by 16% and, therefore, causes total cost of transport to decrease accordingly. High glucose availability does not improve Ucrit because the fish are unable to take advantage of this extra fuel during maximal exercise and rely on tissue glycogen instead. In conclusion, trout have a remarkable ability to adjust glucose fluxes that allows them to cope with the cumulative stresses of a glucose overload and graded exercise.

Keywords

References

  1. J Appl Physiol. 1967 Apr;22(4):615-22 [PMID: 6023171]
  2. J Clin Invest. 1971 Dec;50(12):2715-25 [PMID: 5129319]
  3. Sports Med. 2013 Nov;43(11):1139-55 [PMID: 23846824]
  4. J Exp Biol. 1996 Aug;199(Pt 8):1659-66 [PMID: 8708573]
  5. J Exp Biol. 1989 Nov;147:169-88 [PMID: 2614337]
  6. Comp Biochem Physiol B Biochem Mol Biol. 2001 Jun;129(2-3):243-9 [PMID: 11399456]
  7. Diabetes. 1985 Jun;34(6):580-8 [PMID: 3891471]
  8. J Exp Biol. 2007 Jun;210(Pt 12):2146-53 [PMID: 17562888]
  9. Am J Physiol Regul Integr Comp Physiol. 2014 Oct 15;307(8):R1018-24 [PMID: 25121611]
  10. Am J Physiol. 1995 Apr;268(4 Pt 1):E789-96 [PMID: 7733280]
  11. J Appl Physiol (1985). 1996 Aug;81(2):853-7 [PMID: 8872656]
  12. J Exp Biol. 2010 Dec 15;213(Pt 24):4151-7 [PMID: 21112995]
  13. J Appl Physiol (1985). 2000 May;88(5):1707-14 [PMID: 10797133]
  14. J Exp Biol. 1999;202(Pt 16):2161-2166 [PMID: 10409487]
  15. Am J Physiol Endocrinol Metab. 2002 Sep;283(3):E573-7 [PMID: 12169451]
  16. J Exp Biol. 2005 Jul;208(Pt 14):2731-9 [PMID: 16000542]
  17. Ann N Y Acad Sci. 1959 Sep 25;82:420-30 [PMID: 13833973]
  18. Fish Physiol Biochem. 2009 Aug;35(3):519-39 [PMID: 18791853]
  19. J Exp Biol. 2015 Sep;218(Pt 18):2873-80 [PMID: 26232417]
  20. Gen Comp Endocrinol. 2001 Apr;122(1):48-59 [PMID: 11352553]
  21. Am J Physiol. 1983 May;244(5):E505-12 [PMID: 6846535]
  22. J Appl Physiol (1985). 1998 Apr;84(4):1413-7 [PMID: 9516211]
  23. Metabolism. 1988 Jan;37(1):55-60 [PMID: 2892114]
  24. J Exp Biol. 1996;199(Pt 5):1157-62 [PMID: 9318994]
  25. J Exp Biol. 2013 Dec 15;216(Pt 24):4549-56 [PMID: 24031058]
  26. Br J Nutr. 1977 Nov;38(3):385-95 [PMID: 201269]
  27. J Exp Biol. 2012 Jan 1;215(Pt 1):169-78 [PMID: 22162865]
  28. Am J Physiol Regul Integr Comp Physiol. 2000 Apr;278(4):R956-63 [PMID: 10749784]
  29. J Exp Biol. 1994 Dec;197:1-16 [PMID: 7852899]
  30. J Comp Physiol B. 2012 Dec;182(8):1015-45 [PMID: 22476584]
  31. Am J Physiol. 1992 Aug;263(2 Pt 1):E345-54 [PMID: 1514617]
  32. J Clin Endocrinol Metab. 1986 Sep;63(3):541-9 [PMID: 3734029]
  33. Curr Biol. 2012 Dec 18;22(24):2350-4 [PMID: 23219722]
  34. Am J Physiol. 1997 Dec;273(6 Pt 2):R2046-54 [PMID: 9435660]
  35. J Appl Physiol. 1975 Jan;38(1):70-6 [PMID: 1110246]
  36. Br J Nutr. 1977 Nov;38(3):463-70 [PMID: 588544]
  37. Comp Biochem Physiol B Biochem Mol Biol. 1998 May;120(1):89-107 [PMID: 9787780]
  38. Regul Pept. 1998 Oct 16;77(1-3):55-62 [PMID: 9809796]
  39. J Appl Physiol (1985). 1994 Sep;77(3):1537-41 [PMID: 7836162]
  40. Am J Physiol. 1992 Jul;263(1 Pt 1):E17-22 [PMID: 1636695]
  41. Diabetes Obes Metab. 2014 Sep;16 Suppl 1:33-40 [PMID: 25200294]
  42. J Exp Biol. 2010 May;213(Pt 9):1443-52 [PMID: 20400628]

MeSH Term

Animals
Blood Glucose
Carbohydrate Metabolism
Female
Glucagon
Glucose
Glycogen
Hyperglycemia
Liver
Male
Oncorhynchus mykiss
Oxidation-Reduction
Oxygen Consumption
Physical Exertion
Swimming

Chemicals

Blood Glucose
Glycogen
Glucagon
Glucose

Word Cloud

Created with Highcharts 10.0.0glucoseexerciseexogenousgraded1troutswimmingfluxes-1Ucrithepaticproduction2±fishrainbowkineticsRadisposalRdcosttransportcausesspeeds4μmol·kg·minstudyexamineschronicallyhyperglycemicmodulateresponsecriticalspeedwithoutsupplygoalsquantifyratesdetermineaffectschangescaused3establishwhethermodifiesResultsshowchange5bodylengthspersecondBL/smaystimulatedhighestExcellentglucoregulationalsoachievedintensitiessuppliedsuppress1667boost4013responseslimiteffects5-foldincreaseglycemiawhereasshowingmodulationreachdangerouslevels114mMbloodExogenousreducesmetabolicrate16%thereforetotaldecreaseaccordinglyHighavailabilityimproveunabletakeadvantageextrafuelmaximalrelytissueglycogeninsteadconclusionremarkableabilityadjustallowscopecumulativestressesoverloadCopingoverload:Oncorhynchusmykisscarbohydratemetabolismcontinuoustracerinfusionphysiology

Similar Articles

Cited By