Learning Discriminative Bayesian Networks from High-Dimensional Continuous Neuroimaging Data.

Luping Zhou, Lei Wang, Lingqiao Liu, Philip Ogunbona, Dinggang Shen
Author Information

Abstract

Due to its causal semantics, Bayesian networks (BN) have been widely employed to discover the underlying data relationship in exploratory studies, such as brain research. Despite its success in modeling the probability distribution of variables, BN is naturally a generative model, which is not necessarily discriminative. This may cause the ignorance of subtle but critical network changes that are of investigation values across populations. In this paper, we propose to improve the discriminative power of BN models for continuous variables from two different perspectives. This brings two general discriminative learning frameworks for Gaussian Bayesian networks (GBN). In the first framework, we employ Fisher kernel to bridge the generative models of GBN and the discriminative classifiers of SVMs, and convert the GBN parameter learning to Fisher kernel learning via minimizing a generalization error bound of SVMs. In the second framework, we employ the max-margin criterion and build it directly upon GBN models to explicitly optimize the classification performance of the GBNs. The advantages and disadvantages of the two frameworks are discussed and experimentally compared. Both of them demonstrate strong power in learning discriminative parameters of GBNs for neuroimaging based brain network analysis, as well as maintaining reasonable representation capacity. The contributions of this paper also include a new Directed Acyclic Graph (DAG) constraint with theoretical guarantee to ensure the graph validity of GBN.

References

  1. IEEE Trans Pattern Anal Mach Intell. 2013 Jun;35(6):1328-42 [PMID: 22665720]
  2. IEEE Trans Pattern Anal Mach Intell. 2012 Mar;34(3):521-32 [PMID: 21808086]
  3. IEEE Trans Pattern Anal Mach Intell. 2012 Jul;34(7):1249-62 [PMID: 22156097]
  4. Neuroimage. 2003 Aug;19(4):1273-302 [PMID: 12948688]
  5. Conf Comput Vis Pattern Recognit Workshops. 2013;2013:2243-2250 [PMID: 25328915]
  6. Neurology. 2006 Sep 26;67(6):1011-7 [PMID: 17000970]
  7. PLoS Comput Biol. 2008 Jun 27;4(6):e1000100 [PMID: 18584043]
  8. Cereb Cortex. 2012 Jul;22(7):1530-41 [PMID: 21878484]
  9. Neuroradiology. 2011 Oct;53(10):733-48 [PMID: 21113707]
  10. Nat Rev Neurosci. 2009 Mar;10(3):186-98 [PMID: 19190637]
  11. Neuroimage. 2011 Jan 15;54(2):875-91 [PMID: 20817103]
  12. AJNR Am J Neuroradiol. 2013 Feb;34(2):340-5 [PMID: 22790250]
  13. Hum Brain Mapp. 2007 Oct;28(10):967-78 [PMID: 17133390]
  14. Hum Brain Mapp. 2007 Feb;28(2):85-93 [PMID: 16718669]
  15. Med Image Comput Comput Assist Interv. 2014;17 (Pt 3):321-8 [PMID: 25320815]
  16. PLoS One. 2013 Dec 06;8(12 ):e82104 [PMID: 24324753]
  17. Biometrika. 2010 Sep;97(3):519-538 [PMID: 22434937]
  18. IEEE Trans Pattern Anal Mach Intell. 2008 Sep;30(9):1534-46 [PMID: 18617713]
  19. IEEE Trans Cybern. 2013 Apr;43(2):557-69 [PMID: 23014757]

Grants

  1. R01 EB006733/NIBIB NIH HHS

Word Cloud

Created with Highcharts 10.0.0discriminativeGBNlearningBayesianBNmodelstwonetworksbrainvariablesgenerativenetworkpaperpowerframeworksframeworkemployFisherkernelSVMsGBNsDuecausalsemanticswidelyemployeddiscoverunderlyingdatarelationshipexploratorystudiesresearchDespitesuccessmodelingprobabilitydistributionnaturallymodelnecessarilymaycauseignorancesubtlecriticalchangesinvestigationvaluesacrosspopulationsproposeimprovecontinuousdifferentperspectivesbringsgeneralGaussianfirstbridgeclassifiersconvertparameterviaminimizinggeneralizationerrorboundsecondmax-margincriterionbuilddirectlyuponexplicitlyoptimizeclassificationperformanceadvantagesdisadvantagesdiscussedexperimentallycompareddemonstratestrongparametersneuroimagingbasedanalysiswellmaintainingreasonablerepresentationcapacitycontributionsalsoincludenewDirectedAcyclicGraphDAGconstrainttheoreticalguaranteeensuregraphvalidityLearningDiscriminativeNetworksHigh-DimensionalContinuousNeuroimagingData

Similar Articles

Cited By