A Retina Inspired Model for Enhancing Visibility of Hazy Images.

Xian-Shi Zhang, Shao-Bing Gao, Chao-Yi Li, Yong-Jie Li
Author Information
  1. Xian-Shi Zhang: Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China.
  2. Shao-Bing Gao: Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China.
  3. Chao-Yi Li: Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengdu, China; Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China.
  4. Yong-Jie Li: Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China.

Abstract

The mammalian retina seems far smarter than scientists have believed so far. Inspired by the visual processing mechanisms in the retina, from the layer of photoreceptors to the layer of retinal ganglion cells (RGCs), we propose a computational model for haze removal from a single input image, which is an important issue in the field of image enhancement. In particular, the bipolar cells serve to roughly remove the low-frequency of haze, and the amacrine cells modulate the output of cone bipolar cells to compensate the loss of details by increasing the image contrast. Then the RGCs with disinhibitory receptive field surround refine the local haze removal as well as the image detail enhancement. Results on a variety of real-world and synthetic hazy images show that the proposed model yields results comparative to or even better than the state-of-the-art methods, having the advantage of simultaneous dehazing and enhancing of single hazy image with simple and straightforward implementation.

Keywords

References

  1. Neuron. 2010 Jan 28;65(2):150-64 [PMID: 20152123]
  2. Nature. 2010 Oct 7;467(7316):673-7 [PMID: 20930838]
  3. Nat Neurosci. 1999 Aug;2(8):733-9 [PMID: 10412063]
  4. J Neurophysiol. 1969 May;32(3):339-55 [PMID: 4306897]
  5. J Neurophysiol. 1965 Sep;28(5):819-32 [PMID: 5867881]
  6. J Opt Soc Am A Opt Image Sci Vis. 2012 Feb 1;29(2):A223-32 [PMID: 22330383]
  7. Prog Retin Eye Res. 2012 Sep;31(5):407-41 [PMID: 22580106]
  8. Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17368-73 [PMID: 20855627]
  9. Exp Brain Res. 1987;67(1):16-26 [PMID: 3622676]
  10. J Neurosci. 2010 Nov 10;30(45):14955-63 [PMID: 21068298]
  11. Vision Res. 1994 Sep;34(18):2337-55 [PMID: 7975275]
  12. Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17087-94 [PMID: 20876118]
  13. IEEE Trans Image Process. 2015 Aug;24(8):2565-78 [PMID: 25910090]
  14. Nat Neurosci. 2012 May 27;15(7):954-6 [PMID: 22634731]
  15. J Neurophysiol. 2004 Sep;92(3):1708-17 [PMID: 15128751]
  16. J Neurosci. 2014 Jan 29;34(5):1760-8 [PMID: 24478358]
  17. Opt Express. 2009 Jan 19;17(2):472-93 [PMID: 19158860]
  18. Vision Res. 1992 Feb;32(2):219-28 [PMID: 1574837]
  19. Neuron. 2008 Jan 10;57(1):147-58 [PMID: 18184571]
  20. IEEE Trans Pattern Anal Mach Intell. 2015 Oct;37(10):1973-85 [PMID: 26353182]
  21. J Neurosci. 2011 Feb 2;31(5):1762-72 [PMID: 21289186]
  22. IEEE Trans Image Process. 1997;6(7):965-76 [PMID: 18282987]
  23. J Neurosci. 2006 Oct 25;26(43):11148-61 [PMID: 17065455]
  24. Vision Res. 1991;31(9):1529-40 [PMID: 1949622]
  25. J Neurophysiol. 2006 Feb;95(2):837-49 [PMID: 16424455]
  26. Neuron. 2012 Oct 18;76(2):266-80 [PMID: 23083731]
  27. J Opt Soc Am. 1971 Jan;61(1):1-11 [PMID: 5541571]
  28. IEEE Trans Pattern Anal Mach Intell. 2011 Dec;33(12):2341-53 [PMID: 20820075]
  29. Prog Retin Eye Res. 2010 Nov;29(6):622-39 [PMID: 20826226]
  30. Nat Rev Neurosci. 2014 Aug;15(8):507-19 [PMID: 25158357]
  31. Vision Res. 1986;26(1):7-21 [PMID: 3716215]
  32. Nature. 2001 Apr 19;410(6831):933-6 [PMID: 11309618]
  33. Vision Res. 2005 Dec;45(27):3323-42 [PMID: 16169037]
  34. Cereb Cortex. 2013 Feb;23(2):283-92 [PMID: 22302117]
  35. J Neurosci. 2002 Jul 15;22(14):6158-75 [PMID: 12122075]
  36. J Physiol. 1966 Dec;187(3):517-52 [PMID: 16783910]
  37. IEEE Trans Image Process. 2012 Feb;21(2):662-73 [PMID: 21896391]
  38. Vision Res. 1983;23(4):381-8 [PMID: 6880036]
  39. Vision Res. 2011 Apr 13;51(7):674-700 [PMID: 20849875]

Word Cloud

Created with Highcharts 10.0.0imagecellshazeretinamodelremovalfieldfarInspiredlayerretinalganglionRGCssingleenhancementbipolardisinhibitoryreceptivehazymammalianseemssmarterscientistsbelievedvisualprocessingmechanismsphotoreceptorsproposecomputationalinputimportantissueparticularserveroughlyremovelow-frequencyamacrinemodulateoutputconecompensatelossdetailsincreasingcontrastsurroundrefinelocalwelldetailResultsvarietyreal-worldsyntheticimagesshowproposedyieldsresultscomparativeevenbetterstate-of-the-artmethodsadvantagesimultaneousdehazingenhancingsimplestraightforwardimplementationRetinaModelEnhancingVisibilityHazyImageseffectnon-classicalinspiredcell

Similar Articles

Cited By (2)