Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain.

Lev E Givon, Aurel A Lazar
Author Information
  1. Lev E Givon: Department of Electrical Engineering, Columbia University, New York, NY 10027, United States of America.
  2. Aurel A Lazar: Department of Electrical Engineering, Columbia University, New York, NY 10027, United States of America.

Abstract

We have developed an open software platform called Neurokernel for collaborative development of comprehensive models of the brain of the fruit fly Drosophila melanogaster and their execution and testing on multiple Graphics Processing Units (GPUs). Neurokernel provides a programming model that capitalizes upon the structural organization of the fly brain into a fixed number of functional modules to distinguish between these modules' local information processing capabilities and the connectivity patterns that link them. By defining mandatory communication interfaces that specify how data is transmitted between models of each of these modules regardless of their internal design, Neurokernel explicitly enables multiple researchers to collaboratively model the fruit fly's entire brain by integration of their independently developed models of its constituent processing units. We demonstrate the power of Neurokernel's model integration by combining independently developed models of the retina and lamina neuropils in the fly's visual system and by demonstrating their neuroinformation processing capability. We also illustrate Neurokernel's ability to take advantage of direct GPU-to-GPU data transfers with benchmarks that demonstrate scaling of Neurokernel's communication performance both over the number of interface ports exposed by an emulation's constituent modules and the total number of modules comprised by an emulation.

References

  1. J Comput Neurosci. 2015 Feb;38(1):1-24 [PMID: 25175020]
  2. Nature. 2013 Nov 14;503(7475):262-6 [PMID: 24107996]
  3. Curr Opin Neurobiol. 2011 Aug;21(4):527-34 [PMID: 21705212]
  4. Neuron. 2010 Apr 15;66(1):15-36 [PMID: 20399726]
  5. Philos Trans A Math Phys Eng Sci. 2009 Jun 13;367(1896):2387-97 [PMID: 19414461]
  6. Curr Biol. 2012 Aug 7;22(15):1371-80 [PMID: 22704990]
  7. J Exp Biol. 2006 Aug;209(Pt 15):3001-17 [PMID: 16857884]
  8. Neuroinformatics. 2010 Mar;8(1):43-60 [PMID: 20195795]
  9. Curr Biol. 2015 May 18;25(10):1249-58 [PMID: 25866397]
  10. Elife. 2015 May 14;4: [PMID: 25974217]
  11. Curr Opin Neurobiol. 2011 Apr;21(2):254-60 [PMID: 21441021]
  12. J Neurosci. 2012 May 2;32(18):6061-71 [PMID: 22553013]
  13. Front Comput Neurosci. 2014 Nov 03;8:137 [PMID: 25404913]
  14. IEEE Trans Neural Netw Learn Syst. 2014 Feb;25(2):316-31 [PMID: 24807031]
  15. Nat Biotechnol. 2010 Apr;28(4):348-53 [PMID: 20231818]
  16. Network. 2012;23(4):167-82 [PMID: 23067314]
  17. Nat Rev Neurosci. 2013 Sep;14(9):659-64 [PMID: 23958663]
  18. Nat Commun. 2014 Jul 11;5:4342 [PMID: 25014658]
  19. Neuron. 2007 Oct 4;56(1):155-70 [PMID: 17920022]
  20. Exp Brain Res. 1967;3(3):248-70 [PMID: 6067693]
  21. Front Neuroinform. 2009 Jan 27;2:11 [PMID: 19194529]
  22. Neural Netw. 2015 Mar;63:254-71 [PMID: 25594573]
  23. Neuroinformatics. 2010 Jun;8(2):113-34 [PMID: 20502987]
  24. Curr Opin Neurobiol. 2010 Oct;20(5):667-75 [PMID: 20833533]
  25. Nature. 2013 Aug 8;500(7461):212-6 [PMID: 23925246]
  26. Nat Protoc. 2014 Jan;9(1):193-208 [PMID: 24385149]
  27. Science. 2012 May 18;336(6083):925-31 [PMID: 22605779]
  28. Front Neuroinform. 2009 May 27;3:11 [PMID: 19543450]
  29. Neuron. 2007 Apr 19;54(2):219-35 [PMID: 17442244]
  30. Front Neuroinform. 2009 Mar 24;3:7 [PMID: 19352442]
  31. Science. 2012 Nov 30;338(6111):1202-5 [PMID: 23197532]
  32. Philos Trans R Soc Lond B Biol Sci. 1986 Nov 12;314(1165):1-340 [PMID: 22462104]
  33. Front Comput Neurosci. 2014 Sep 26;8:117 [PMID: 25309413]
  34. Curr Biol. 2011 Jan 11;21(1):1-11 [PMID: 21129968]
  35. Curr Biol. 2008 Apr 22;18(8):553-65 [PMID: 18403201]
  36. Curr Biol. 2010 Aug 24;20(16):1470-5 [PMID: 20655222]
  37. Neural Netw. 2009 Jul-Aug;22(5-6):791-800 [PMID: 19615853]
  38. Nature. 2013 Aug 8;500(7461):175-81 [PMID: 23925240]
  39. J Neurosci. 2007 Oct 31;27(44):11807-19 [PMID: 17978017]
  40. PLoS Comput Biol. 2010 Jun 17;6(6):e1000815 [PMID: 20585541]
  41. Front Neuroinform. 2011 Sep 14;5:19 [PMID: 22007166]
  42. Neural Comput. 2014 Feb;26(2):264-305 [PMID: 24206386]
  43. J Comput Neurosci. 2004 Jul-Aug;17(1):7-11 [PMID: 15218350]
  44. Neuroinformatics. 2012 Jul;10(3):287-304 [PMID: 22437992]
  45. J Comput Neurosci. 2011 Feb;30(1):143-61 [PMID: 20730480]
  46. Curr Biol. 2008 Mar 25;18(6):464-70 [PMID: 18342508]
  47. Front Neurosci. 2009 Sep 15;3(2):192-7 [PMID: 20011141]
  48. Curr Opin Neurobiol. 2004 Dec;14(6):729-36 [PMID: 15582376]
  49. Front Comput Neurosci. 2014 Sep 01;8:95 [PMID: 25225477]
  50. Genesis. 2002 Sep-Oct;34(1-2):1-15 [PMID: 12324939]

MeSH Term

Algorithms
Animals
Brain
Brain Mapping
Computational Biology
Computer Graphics
Computer Simulation
Drosophila melanogaster
Neurons
Programming Languages
Retina
Software

Word Cloud

Created with Highcharts 10.0.0modelsmodulesdevelopedNeurokernelbrainmodelnumberprocessingNeurokernel'sfruitflymultiplecommunicationdatafly'sintegrationindependentlyconstituentdemonstrateopensoftwareplatformcalledcollaborativedevelopmentcomprehensiveDrosophilamelanogasterexecutiontestingGraphicsProcessingUnitsGPUsprovidesprogrammingcapitalizesuponstructuralorganizationfixedfunctionaldistinguishmodules'localinformationcapabilitiesconnectivitypatternslinkdefiningmandatoryinterfacesspecifytransmittedregardlessinternaldesignexplicitlyenablesresearcherscollaborativelyentireunitspowercombiningretinalaminaneuropilsvisualsystemdemonstratingneuroinformationcapabilityalsoillustrateabilitytakeadvantagedirectGPU-to-GPUtransfersbenchmarksscalingperformanceinterfaceportsexposedemulation'stotalcomprisedemulationNeurokernel:OpenSourcePlatformEmulatingFruitFlyBrain

Similar Articles

Cited By (10)