Ablation of Neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression.

Jeremy T Miyauchi, Danling Chen, Matthew Choi, Jillian C Nissen, Kenneth R Shroyer, Snezana Djordevic, Ian C Zachary, David Selwood, Stella E Tsirka
Author Information
  1. Jeremy T Miyauchi: Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA.
  2. Danling Chen: Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA.
  3. Matthew Choi: Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA.
  4. Jillian C Nissen: Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA.
  5. Kenneth R Shroyer: Department of Pathology, Stony Brook University, Stony Brook, NY, USA.
  6. Snezana Djordevic: Institute of Structural and Molecular Biology, University College London, London, UK.
  7. Ian C Zachary: Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, London, UK.
  8. David Selwood: Wolfson Institute for Biomedical Research, University College London, London, UK.
  9. Stella E Tsirka: Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA.

Abstract

Gliomas are the most commonly diagnosed primary tumors of the central nervous system (CNS). Median times of survival are dismal regardless of the treatment approach, underlying the need to develop more effective therapies. Modulation of the immune system is a promising strategy as innate and adaptive immunity play important roles in cancer progression. Glioma associated microglia and macrophages (GAMs) can comprise over 30% of the cells in glioma biopsies. Gliomas secrete cytokines that suppress the anti-tumorigenic properties of GAMs, causing them to secrete factors that support the tumor's spread and growth. Neuropilin 1 (Nrp1) is a transmembrane receptor that in mice both amplifies pro-angiogenic signaling in the tumor microenvironment and affects behavior of innate immune cells. Using a Cre-lox system, we generated mice that lack expression of Nrp1 in GAMs. We demonstrate, using an in vivo orthotopic glioma model, that tumors in mice with Nrp1-deficient GAMs exhibit less vascularity, grow at a slower pace, and are populated by increased numbers of anti-tumorigenic GAMs. Moreover, glioma survival times in mice with Nrp1-deficient GAMs were significantly longer. Treating wild-type mice with a small molecule inhibitor of Nrp1's b1 domain, EG00229, which we show here is selective for Nrp1 over Nrp2, yielded an identical outcome. Nrp1-deficient or EG00229-treated wild-type microglia exhibited a shift towards anti-tumorigenicity as evident by altered inflammatory marker profiles in vivo and decreased SMAD2/3 activation when conditioned in the presence of glioma-derived factors. These results provide support for the proposal that pharmacological inhibition of Nrp1 constitutes a potential strategy for suppressing glioma progression.

Keywords

References

  1. J Neuroinflammation. 2012 Sep 28;9:228 [PMID: 23020860]
  2. Neurol Res. 2005 Jun;27(4):371-7 [PMID: 15949234]
  3. Nat Immunol. 2010 Oct;11(10):889-96 [PMID: 20856220]
  4. J Transl Med. 2014 Apr 29;12:107 [PMID: 24779345]
  5. Cancer Cell. 2013 Dec 9;24(6):695-709 [PMID: 24332039]
  6. Carcinogenesis. 2012 Feb;33(2):312-9 [PMID: 22159219]
  7. Carcinogenesis. 2011 Apr;32(4):613-21 [PMID: 21186301]
  8. Oncogene. 1993 Jan;8(1):219-22 [PMID: 8380919]
  9. Nat Neurosci. 2014 Jan;17 (1):46-55 [PMID: 24316889]
  10. Curr Biol. 1998 Jan 1;8(1):19-25 [PMID: 9427623]
  11. Oncogene. 2005 Aug 29;24(37):5722-30 [PMID: 16123805]
  12. Oncogene. 2007 Aug 16;26(38):5577-86 [PMID: 17369861]
  13. N Engl J Med. 2008 Jul 31;359(5):492-507 [PMID: 18669428]
  14. J Neurochem. 2013 Nov;127(3):394-402 [PMID: 24033337]
  15. Glia. 2011 Mar;59(3):472-85 [PMID: 21264953]
  16. Am J Pathol. 2010 Feb;176(2):952-67 [PMID: 20042677]
  17. J Neurosurg. 2004 Dec;101(6):1004-11 [PMID: 15597761]
  18. J Immunol. 2012 Jul 1;189(1):444-53 [PMID: 22664874]
  19. Oncogene. 2009 Oct 8;28(40):3537-50 [PMID: 19684614]
  20. Clin Dev Immunol. 2013;2013:285246 [PMID: 23983766]
  21. PLoS One. 2013;8(2):e56293 [PMID: 23393609]
  22. J Exp Med. 2012 Mar 12;209(3):507-20 [PMID: 22393126]
  23. Cancer Sci. 2006 Jun;97(6):546-53 [PMID: 16734735]
  24. Glia. 2010 Apr;58(5):559-71 [PMID: 19941340]
  25. Anticancer Res. 2004 Mar-Apr;24(2B):547-52 [PMID: 15160992]
  26. Neuro Oncol. 2001 Apr;3(2):82-8 [PMID: 11296484]
  27. J Exp Med. 2014 Jun 2;211(6):1167-83 [PMID: 24863063]
  28. PLoS One. 2015 Feb 06;10(2):e0116644 [PMID: 25658639]
  29. Oncotarget. 2012 Sep;3(9):921-39 [PMID: 22948112]
  30. Dev Cell. 2003 Jul;5(1):45-57 [PMID: 12852851]
  31. J Leukoc Biol. 2008 Jul;84(1):302-10 [PMID: 18436584]
  32. Cancer Res. 1970 Sep;30(9):2394-400 [PMID: 5475483]
  33. J Med Chem. 2010 Mar 11;53(5):2215-26 [PMID: 20151671]
  34. JAMA. 2013 Nov 6;310(17):1842-50 [PMID: 24193082]
  35. Glia. 2002 Nov;40(2):252-9 [PMID: 12379912]
  36. Oncogene. 2010 Apr 22;29(16):2381-92 [PMID: 20140015]
  37. Glia. 2011 Aug;59(8):1169-80 [PMID: 21446047]
  38. Mol Cell Biol. 2011 Mar;31(6):1174-85 [PMID: 21245381]
  39. Clin Dev Immunol. 2013;2013:264124 [PMID: 23864876]

Grants

  1. RG/06/003/21131/British Heart Foundation
  2. T32GM007518/NIGMS NIH HHS
  3. T32 GM008444/NIGMS NIH HHS
  4. T32 GM007518/NIGMS NIH HHS
  5. F30 CA196110/NCI NIH HHS
  6. T32GM008444/NIGMS NIH HHS
  7. PG/10/52/28448/British Heart Foundation
  8. RG/11/11/29050/British Heart Foundation
  9. R01NS42168/NINDS NIH HHS

MeSH Term

Animals
Antineoplastic Agents
Cell Line, Tumor
Disease Progression
Glioma
Humans
Macrophages
Mice
Mice, Inbred C57BL
Microglia
Neuropilin-1
Smad2 Protein
Smad3 Protein

Chemicals

Antineoplastic Agents
SMAD2 protein, human
SMAD3 protein, human
Smad2 Protein
Smad3 Protein
Neuropilin-1

Word Cloud

Created with Highcharts 10.0.0GAMsgliomamicemicrogliaNrp1systemprogressionNeuropilin1Nrp1-deficientGliomastumorstimessurvivalimmunestrategyinnatemacrophagescellssecreteanti-tumorigenicfactorssupporttumorvivowild-typecommonlydiagnosedprimarycentralnervousCNSMediandismalregardlesstreatmentapproachunderlyingneeddevelopeffectivetherapiesModulationpromisingadaptiveimmunityplayimportantrolescancerGliomaassociatedcancomprise30%biopsiescytokinessuppresspropertiescausingtumor'sspreadgrowthtransmembranereceptoramplifiespro-angiogenicsignalingmicroenvironmentaffectsbehaviorUsingCre-loxgeneratedlackexpressiondemonstrateusingorthotopicmodelexhibitlessvascularitygrowslowerpacepopulatedincreasednumbersMoreoversignificantlylongerTreatingsmallmoleculeinhibitorNrp1'sb1domainEG00229showselectiveNrp2yieldedidenticaloutcomeEG00229-treatedexhibitedshifttowardsanti-tumorigenicityevidentalteredinflammatorymarkerprofilesdecreasedSMAD2/3activationconditionedpresenceglioma-derivedresultsprovideproposalpharmacologicalinhibitionconstitutespotentialsuppressingAblationglioma-associatedslowsimmunomodulationmacrophage

Similar Articles

Cited By