Slowed aging during reproductive dormancy is reflected in genome-wide transcriptome changes in Drosophila melanogaster.

Lucie Kučerová, Olga I Kubrak, Jonas M Bengtsson, Hynek Strnad, Sören Nylin, Ulrich Theopold, Dick R Nässel
Author Information
  1. Lucie Kučerová: Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm, Sweden. lucie.kucerova@su.se.
  2. Olga I Kubrak: Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden. olga.kubrak@zoologi.su.se.
  3. Jonas M Bengtsson: Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden. jonas.bengtsson@zoologi.su.se.
  4. Hynek Strnad: Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic. strnad@img.cas.cz.
  5. Sören Nylin: Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden. soren.nylin@zoologi.su.se.
  6. Ulrich Theopold: Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm, Sweden. uli.theopold@su.se.
  7. Dick R Nässel: Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden. dnassel@zoologi.su.se.

Abstract

BACKGROUND: In models extensively used in studies of aging and extended lifespan, such as C. elegans and Drosophila, adult senescence is regulated by gene networks that are likely to be similar to ones that underlie lifespan extension during dormancy. These include the evolutionarily conserved insulin/IGF, TOR and germ line-signaling pathways. Dormancy, also known as dauer stage in the larval worm or adult diapause in the fly, is triggered by adverse environmental conditions, and results in drastically extended lifespan with negligible senescence. It is furthermore characterized by increased stress resistance and somatic maintenance, developmental arrest and reallocated energy resources. In the fly Drosophila melanogaster adult reproductive diapause is additionally manifested in arrested ovary development, improved immune defense and altered metabolism. However, the molecular mechanisms behind this adaptive lifespan extension are not well understood.
RESULTS: A genome wide analysis of transcript changes in diapausing D. melanogaster revealed a differential regulation of more than 4600 genes. Gene ontology (GO) and KEGG pathway analysis reveal that many of these genes are part of signaling pathways that regulate metabolism, stress responses, detoxification, immunity, protein synthesis and processes during aging. More specifically, gene readouts and detailed mapping of the pathways indicate downregulation of insulin-IGF (IIS), target of rapamycin (TOR) and MAP kinase signaling, whereas Toll-dependent immune signaling, Jun-N-terminal kinase (JNK) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways are upregulated during diapause. Furthermore, we detected transcriptional regulation of a large number of genes specifically associated with aging and longevity.
CONCLUSIONS: We find that many affected genes and signal pathways are shared between dormancy, aging and lifespan extension, including IIS, TOR, JAK/STAT and JNK. A substantial fraction of the genes affected by diapause have also been found to alter their expression in response to starvation and cold exposure in D. melanogaster, and the pathways overlap those reported in GO analysis of other invertebrates in dormancy or even hibernating mammals. Our study, thus, shows that D. melanogaster is a genetically tractable model for dormancy in other organisms and effects of dormancy on aging and lifespan.

References

  1. Nat Rev Mol Cell Biol. 2006 Feb;7(2):85-96 [PMID: 16493415]
  2. Dev Cell. 2004 Aug;7(2):167-78 [PMID: 15296714]
  3. Exp Gerontol. 2011 May;46(5):349-54 [PMID: 21111799]
  4. PLoS One. 2010;5(6):e10925 [PMID: 20532197]
  5. J Immunol. 2011 Jan 15;186(2):649-56 [PMID: 21209287]
  6. Science. 2001 Dec 21;294(5551):2542-5 [PMID: 11752574]
  7. J Insect Physiol. 2014 Oct;69:101-6 [PMID: 24819200]
  8. Neurobiol Aging. 2005 Jul;26(7):1083-91 [PMID: 15748788]
  9. J Biol Rhythms. 1990 Winter;5(4):315-31 [PMID: 2133139]
  10. Science. 2001 Dec 21;294(5551):2546-9 [PMID: 11752575]
  11. Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3105-10 [PMID: 15708981]
  12. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  13. Nat Immunol. 2005 Sep;6(9):946-53 [PMID: 16086017]
  14. Mol Ecol. 2012 Oct;21(19):4748-69 [PMID: 22913798]
  15. PLoS Genet. 2009 Aug;5(8):e1000596 [PMID: 19680438]
  16. Physiol Genomics. 2009 Nov 6;39(3):202-9 [PMID: 19706691]
  17. Dev Biol. 2002 Mar 1;243(1):166-75 [PMID: 11846485]
  18. Science. 2005 Oct 28;310(5748):667-70 [PMID: 16179433]
  19. Gen Comp Endocrinol. 1990 Aug;79(2):174-84 [PMID: 2118114]
  20. Annu Rev Entomol. 2002;47:93-122 [PMID: 11729070]
  21. Nat Genet. 2004 Feb;36(2):197-204 [PMID: 14730301]
  22. Neuron. 2012 Oct 4;76(1):82-97 [PMID: 23040808]
  23. Int J Biochem Cell Biol. 2009 May;41(5):1006-10 [PMID: 18992839]
  24. PLoS One. 2014;9(1):e86386 [PMID: 24466069]
  25. Aging Cell. 2010 Jun;9(3):336-46 [PMID: 20156206]
  26. Cell Mol Life Sci. 2010 Jul;67(14):2405-24 [PMID: 20213274]
  27. J Innate Immun. 2011;3(1):52-64 [PMID: 21063077]
  28. J Gerontol A Biol Sci Med Sci. 2015 Dec;70(12):1461-9 [PMID: 26265729]
  29. Bioinformatics. 2009 Jan 1;25(1):75-82 [PMID: 18990722]
  30. Genesis. 2013 Mar;51(3):147-62 [PMID: 23109363]
  31. Trends Endocrinol Metab. 2002 May-Jun;13(4):156-62 [PMID: 11943559]
  32. Cell Metab. 2006 Aug;4(2):133-42 [PMID: 16890541]
  33. Science. 2012 May 4;336(6081):582-5 [PMID: 22556251]
  34. Cell Metab. 2005 May;1(5):323-30 [PMID: 16054079]
  35. Trends Endocrinol Metab. 2012 Dec;23(12):637-44 [PMID: 22939742]
  36. Nature. 2006 Dec 14;444(7121):945-8 [PMID: 17167488]
  37. J Insect Physiol. 2007 Dec;53(12):1276-82 [PMID: 17681525]
  38. J Exp Biol. 2014 Oct 15;217(Pt 20):3733-41 [PMID: 25214494]
  39. J Insect Physiol. 2007 Mar;53(3):235-45 [PMID: 17098250]
  40. J Genet Genomics. 2014 May 20;41(5):283-92 [PMID: 24894355]
  41. Sci Rep. 2015;5:11680 [PMID: 26123697]
  42. PLoS Biol. 2014 Mar;12(3):e1001809 [PMID: 24643257]
  43. J Exp Biol. 2012 May 15;215(Pt 10):1720-7 [PMID: 22539739]
  44. Genet Res Int. 2015;2015:835624 [PMID: 26090231]
  45. J Neurophysiol. 2006 Apr;95(4):2314-25 [PMID: 16319199]
  46. Nature. 2004 Sep 16;431(7006):316-20 [PMID: 15372035]
  47. J Insect Physiol. 2006 Nov-Dec;52(11-12):1189-93 [PMID: 17056058]
  48. Exp Gerontol. 2011 May;46(5):376-81 [PMID: 20849947]
  49. Development. 2006 Jul;133(14):2605-16 [PMID: 16794031]
  50. Genes Dev. 2005 Aug 15;19(16):1840-3 [PMID: 16055649]
  51. Cell. 2005 Feb 25;120(4):449-60 [PMID: 15734678]
  52. Oncogene. 2000 May 15;19(21):2598-606 [PMID: 10851058]
  53. Nat Genet. 2007 Jun;39(6):715-20 [PMID: 17534367]
  54. BMC Genomics. 2014;15:927 [PMID: 25344338]
  55. J Exp Biol. 2008 Oct;211(Pt 19):3103-10 [PMID: 18805809]
  56. Bioinformatics. 2009 Jan 15;25(2):288-9 [PMID: 19033274]
  57. Nucleic Acids Res. 2012 Jan;40(Database issue):D1082-8 [PMID: 22080565]
  58. Gene Expr Patterns. 2007 Jan;7(3):323-31 [PMID: 17008134]
  59. Mol Cell. 1999 Nov;4(5):827-37 [PMID: 10619029]
  60. Oncogene. 2003 Jul 31;22(31):4860-7 [PMID: 12894227]
  61. Insect Biochem Mol Biol. 2010 Dec;40(12):891-7 [PMID: 20849954]
  62. Mech Ageing Dev. 2006 May;127(5):458-72 [PMID: 16522328]
  63. Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8137-42 [PMID: 24821805]
  64. Exp Gerontol. 2001 Apr;36(4-6):723-38 [PMID: 11295511]
  65. J Evol Biol. 2013 Sep;26(9):1890-902 [PMID: 23944235]
  66. Proc Natl Acad Sci U S A. 2008 May 6;105(18):6777-81 [PMID: 18448677]
  67. Science. 2009 Dec 4;326(5958):1403-5 [PMID: 19965758]
  68. EMBO J. 2002 Jun 3;21(11):2568-79 [PMID: 12032070]
  69. Q Rev Biol. 2013 Sep;88(3):185-218 [PMID: 24053071]
  70. Nucleic Acids Res. 2013 Jan;41(Database issue):D1027-33 [PMID: 23193293]
  71. Comp Biochem Physiol A Mol Integr Physiol. 2013 Jan;164(1):91-100 [PMID: 23085293]
  72. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 [PMID: 12883005]
  73. Genome Biol. 2004;5(10):R80 [PMID: 15461798]
  74. Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12564-9 [PMID: 20538976]
  75. Bioessays. 2001 Dec;23(12):1138-47 [PMID: 11746233]
  76. J Cell Biol. 1999 Mar 22;144(6):1123-33 [PMID: 10087258]
  77. Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16207-11 [PMID: 18852464]
  78. Microsc Res Tech. 1999 Apr 15;45(2):106-21 [PMID: 10332728]
  79. Annu Rev Entomol. 2011;56:103-21 [PMID: 20690828]
  80. Development. 2002 Dec;129(23):5437-47 [PMID: 12403714]
  81. Cell Metab. 2008 Apr;7(4):321-32 [PMID: 18396138]
  82. FEBS Lett. 2010 Apr 2;584(7):1342-9 [PMID: 20079355]
  83. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14909-14 [PMID: 20668242]
  84. Gen Comp Endocrinol. 2014 Dec 1;209:35-49 [PMID: 25058364]
  85. Stat Appl Genet Mol Biol. 2004;3:Article3 [PMID: 16646809]
  86. Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13497-502 [PMID: 20624977]
  87. Genetics. 2011 Jan;187(1):245-60 [PMID: 21059887]
  88. Biochem J. 2010 Jan 1;425(1):13-26 [PMID: 20001959]
  89. Mol Cell. 2001 Jun;7(6):1321-7 [PMID: 11430833]
  90. Gene. 2001 Oct 31;278(1-2):177-84 [PMID: 11707335]
  91. Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15328-33 [PMID: 18832180]
  92. Trends Cell Biol. 2003 Feb;13(2):79-85 [PMID: 12559758]
  93. Science. 2001 Apr 6;292(5514):104-6 [PMID: 11292874]
  94. J Cell Sci. 2005 Dec 1;118(Pt 23):5431-41 [PMID: 16278294]
  95. BMC Biol. 2009;7:14 [PMID: 19335876]
  96. PLoS One. 2010;5(3):e9574 [PMID: 20221437]
  97. Proc Natl Acad Sci U S A. 1989 May;86(10):3748-52 [PMID: 2498875]
  98. PLoS Genet. 2015 May;11(5):e1005209 [PMID: 26020940]
  99. Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15911-5 [PMID: 17043223]
  100. Cell. 2005 Apr 8;121(1):115-25 [PMID: 15820683]
  101. Aging Cell. 2009 Jun;8(3):288-95 [PMID: 19627268]
  102. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11427-32 [PMID: 11027343]
  103. Cell. 2006 Feb 10;124(3):471-84 [PMID: 16469695]
  104. Front Physiol. 2013 Sep 17;4:252 [PMID: 24062693]
  105. Acta Biochim Biophys Sin (Shanghai). 2012 Nov;44(11):897-901 [PMID: 22935512]
  106. Prog Neurobiol. 2010 Sep;92(1):42-104 [PMID: 20447440]
  107. Science. 2007 Jun 29;316(5833):1898-900 [PMID: 17600216]
  108. Exp Gerontol. 2008 Jun;43(6):520-9 [PMID: 18406553]
  109. Science. 2007 Jun 29;316(5833):1895-8 [PMID: 17600215]
  110. Science. 2001 Apr 6;292(5514):107-10 [PMID: 11292875]
  111. Scand J Immunol. 2014 Jun;79(6):377-85 [PMID: 24673174]
  112. Biochem J. 2003 Oct 15;375(Pt 2):365-71 [PMID: 12820900]
  113. Mech Ageing Dev. 2007 Mar;128(3):237-49 [PMID: 17196240]
  114. FEBS Lett. 2011 May 20;585(10):1450-60 [PMID: 21354417]
  115. Bioinformatics. 2009 Apr 1;25(7):875-81 [PMID: 19189975]
  116. Gen Comp Endocrinol. 2003 Jun 1;132(1):10-20 [PMID: 12765639]
  117. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13726-31 [PMID: 11095759]
  118. Aging (Albany NY). 2014 May;6(5):355-68 [PMID: 24864304]
  119. Genetics. 2013 Dec;195(4):1291-306 [PMID: 24077308]
  120. Cell. 1996 Sep 20;86(6):973-83 [PMID: 8808632]
  121. Immunol Rev. 2004 Apr;198:72-82 [PMID: 15199955]
  122. Dev Cell. 2007 Dec;13(6):857-71 [PMID: 18061567]
  123. Insect Biochem Mol Biol. 2006 Jan;36(1):47-53 [PMID: 16360949]
  124. Physiol Genomics. 2006 May 16;25(3):393-404 [PMID: 16569777]
  125. J Cell Sci. 2012 Aug 1;125(Pt 15):3568-77 [PMID: 22505614]
  126. Nat Protoc. 2013 Aug;8(8):1551-66 [PMID: 23868073]
  127. Science. 2010 Apr 16;328(5976):321-6 [PMID: 20395504]
  128. Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3967-72 [PMID: 22345563]
  129. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13544-9 [PMID: 16174746]
  130. PLoS One. 2010;5(2):e9141 [PMID: 20161767]
  131. Insect Mol Biol. 2009 Jun;18(3):325-32 [PMID: 19523064]
  132. Science. 2003 Feb 28;299(5611):1346-51 [PMID: 12610294]
  133. Cell. 2011 May 13;145(4):596-606 [PMID: 21565616]
  134. Mech Dev. 2002 Sep;117(1-2):343-6 [PMID: 12204282]
  135. J Exp Biol. 2009 Feb;212(Pt 3):435-45 [PMID: 19151219]
  136. Dev Biol. 2001 Feb 15;230(2):243-57 [PMID: 11161576]
  137. J Exp Biol. 2011 Dec 1;214(Pt 23):3948-59 [PMID: 22071185]
  138. Nat Commun. 2015;6:8332 [PMID: 26383889]
  139. Genes Dev. 2005 Aug 15;19(16):1861-70 [PMID: 16055650]
  140. Genetics. 2004 May;167(1):311-23 [PMID: 15166157]
  141. Nature. 2000 Nov 9;408(6809):255-62 [PMID: 11089983]
  142. FEBS Lett. 1997 Aug 11;413(1):157-61 [PMID: 9287135]
  143. Trends Genet. 2009 May;25(5):217-25 [PMID: 19375812]
  144. PLoS One. 2014;9(11):e113051 [PMID: 25393614]
  145. Dis Model Mech. 2014 Mar;7(3):343-50 [PMID: 24609035]
  146. Development. 2013 Jan 1;140(1):195-204 [PMID: 23222440]
  147. Dev Cell. 2003 Nov;5(5):811-6 [PMID: 14602080]
  148. Fly (Austin). 2007 Nov-Dec;1(6):307-10 [PMID: 18820432]
  149. Cell. 2001 Dec 28;107(7):831-41 [PMID: 11779460]
  150. BMC Ecol. 2010;10:3 [PMID: 20122138]
  151. Front Physiol. 2013 Jul 22;4:189 [PMID: 23885240]
  152. Dev Cell. 2010 Dec 14;19(6):895-902 [PMID: 21145504]
  153. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  154. Curr Biol. 2001 Sep 18;11(18):1479 [PMID: 11566110]
  155. Dev Cell. 2003 Sep;5(3):441-50 [PMID: 12967563]
  156. J Gerontol A Biol Sci Med Sci. 2015 Dec;70(12):1470-8 [PMID: 25922346]
  157. Curr Biol. 2002 Apr 30;12(9):712-23 [PMID: 12007414]
  158. EMBO J. 2002 Jun 17;21(12):3009-18 [PMID: 12065414]
  159. PLoS One. 2011;6(12):e27493 [PMID: 22164210]
  160. Science. 2012 May 4;336(6081):579-82 [PMID: 22556250]
  161. Cell. 2003 Sep 19;114(6):739-49 [PMID: 14505573]
  162. Evolution. 2005 Dec;59(12):2616-25 [PMID: 16526509]
  163. Development. 2002 Feb;129(3):705-17 [PMID: 11830571]
  164. J Biol Chem. 2014 Mar 14;289(11):7558-68 [PMID: 24492611]
  165. Trends Biochem Sci. 2007 Apr;32(4):180-8 [PMID: 17412594]
  166. J Cell Biol. 2007 Dec 17;179(6):1105-13 [PMID: 18086911]
  167. Oncogene. 2007 May 14;26(22):3113-21 [PMID: 17496910]
  168. BMC Genomics. 2009;10:242 [PMID: 19463195]
  169. Mol Biol Cell. 2007 Apr;18(4):1519-29 [PMID: 17314398]

MeSH Term

Aging
Animals
Drosophila melanogaster
Gene Expression Regulation
Gene Ontology
Genome, Insect
Germ Cells
Insulin
Longevity
Reproduction
Signal Transduction
Transcriptome

Chemicals

Insulin

Word Cloud

Created with Highcharts 10.0.0aginglifespandormancypathwaysmelanogastergenesdiapauseDrosophilaadultextensionTORanalysisDsignalingextendedsenescencegenealsoflystressreproductiveimmunemetabolismchangesregulationGOmanyspecificallyIISkinaseJNKJAK/STATaffectedBACKGROUND:modelsextensivelyusedstudiesCelegansregulatednetworkslikelysimilaronesunderlieincludeevolutionarilyconservedinsulin/IGFgermline-signalingDormancyknowndauerstagelarvalwormtriggeredadverseenvironmentalconditionsresultsdrasticallynegligiblefurthermorecharacterizedincreasedresistancesomaticmaintenancedevelopmentalarrestreallocatedenergyresourcesadditionallymanifestedarrestedovarydevelopmentimproveddefensealteredHowevermolecularmechanismsbehindadaptivewellunderstoodRESULTS:genomewidetranscriptdiapausingrevealeddifferential4600GeneontologyKEGGpathwayrevealpartregulateresponsesdetoxificationimmunityproteinsynthesisprocessesreadoutsdetailedmappingindicatedownregulationinsulin-IGFtargetrapamycinMAPwhereasToll-dependentJun-N-terminalJanuskinase/signaltransduceractivatortranscriptionupregulatedFurthermoredetectedtranscriptionallargenumberassociatedlongevityCONCLUSIONS:findsignalsharedincludingsubstantialfractionfoundalterexpressionresponsestarvationcoldexposureoverlapreportedinvertebratesevenhibernatingmammalsstudythusshowsgeneticallytractablemodelorganismseffectsSlowedreflectedgenome-widetranscriptome

Similar Articles

Cited By (38)