State-space model with deep learning for functional dynamics estimation in resting-state fMRI.

Heung-Il Suk, Chong-Yaw Wee, Seong-Whan Lee, Dinggang Shen
Author Information
  1. Heung-Il Suk: Department of Brain and Cognitive Engineering, Korea University, Republic of Korea. Electronic address: hisuk@korea.ac.kr.
  2. Chong-Yaw Wee: Department of Biomedical Engineering, National University of Singapore, Singapore.
  3. Seong-Whan Lee: Department of Brain and Cognitive Engineering, Korea University, Republic of Korea.
  4. Dinggang Shen: Department of Brain and Cognitive Engineering, Korea University, Republic of Korea; Biomedical Research Imaging Center, Department of Radiology, University of North Carolina at Chapel Hill, USA.

Abstract

Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach.

Keywords

References

  1. Front Neurosci. 2014 Aug 20;8:229 [PMID: 25191215]
  2. J Neurosci. 2006 Oct 4;26(40):10222-31 [PMID: 17021177]
  3. Neuroimage. 2012 Nov 15;63(3):1712-9 [PMID: 22796990]
  4. Am J Psychiatry. 2007 Mar;164(3):450-7 [PMID: 17329470]
  5. Biol Psychiatry. 2007 Sep 1;62(5):429-37 [PMID: 17210143]
  6. Biol Psychiatry. 2005 May 15;57(10):1079-88 [PMID: 15866546]
  7. Neural Comput. 2002 Aug;14(8):1771-800 [PMID: 12180402]
  8. Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6493-7 [PMID: 20308545]
  9. J Neurosci. 2010 Jul 14;30(28):9477-87 [PMID: 20631176]
  10. J Neurophysiol. 2010 Jan;103(1):297-321 [PMID: 19889849]
  11. J Neurosci. 2003 Feb 1;23 (3):986-93 [PMID: 12574428]
  12. Magn Reson Med. 2009 Dec;62(6):1619-28 [PMID: 19859933]
  13. J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14 [PMID: 8417010]
  14. PLoS Comput Biol. 2008 Jun 27;4(6):e1000100 [PMID: 18584043]
  15. Inf Process Med Imaging. 2013;23:426-37 [PMID: 24683988]
  16. Med Image Comput Comput Assist Interv. 2015 Oct;9349:573-580 [PMID: 27054199]
  17. Neuroimage. 2014 Nov 1;101:569-82 [PMID: 25042445]
  18. Schizophr Res. 2007 Dec;97(1-3):194-205 [PMID: 17628434]
  19. Neuroinformatics. 2015 Jul;13(3):277-95 [PMID: 25501275]
  20. Nat Rev Neurosci. 2014 Oct;15(10):683-95 [PMID: 25186238]
  21. Brain Struct Funct. 2015 Mar;220(2):841-59 [PMID: 24363140]
  22. IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38 [PMID: 16119262]
  23. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18760-5 [PMID: 18003904]
  24. Neuroimage. 2008 Feb 15;39(4):1666-81 [PMID: 18082428]
  25. PLoS One. 2012;7(3):e32766 [PMID: 22412922]
  26. Brain Res. 2009 Dec 11;1302:167-74 [PMID: 19765560]
  27. Neuroimage. 2013 Oct 15;80:360-78 [PMID: 23707587]
  28. Neuroimage. 2009 Feb 1;44(3):893-905 [PMID: 18976716]
  29. Neuroimage. 2014 Aug 1;96:245-60 [PMID: 24680869]
  30. Neuroimage. 2010 Sep;52(3):1059-69 [PMID: 19819337]
  31. PLoS Comput Biol. 2010 Nov 18;6(11):e1001006 [PMID: 21124954]
  32. Neuroimage. 2013 Dec;83:937-50 [PMID: 23872496]
  33. Hippocampus. 2013 Jan;23 (1):1-6 [PMID: 22815064]
  34. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 [PMID: 15070770]
  35. Science. 2006 Jul 28;313(5786):504-7 [PMID: 16873662]
  36. Neuroimage. 2009 May 15;46(1):87-104 [PMID: 19457397]
  37. Neuroreport. 2006 Feb 6;17(2):209-13 [PMID: 16407773]
  38. Hum Brain Mapp. 2007 Oct;28(10):967-78 [PMID: 17133390]
  39. Neurosci Biobehav Rev. 2009 Mar;33(3):279-96 [PMID: 18824195]
  40. Neuroimage. 2015 Feb 1;106:34-46 [PMID: 25463474]
  41. PLoS One. 2012;7(3):e33182 [PMID: 22457741]
  42. Neuroimage. 2011 Jul 15;57(2):362-77 [PMID: 21440069]
  43. Neurobiol Aging. 2012 Feb;33(2):427.e15-30 [PMID: 21272960]
  44. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 [PMID: 15976020]
  45. Nat Rev Neurol. 2014 Nov;10(11):609 [PMID: 25330722]
  46. Dev Neuropsychol. 2005;28(2):573-94 [PMID: 16144428]
  47. Brain Struct Funct. 2014 Mar;219(2):641-56 [PMID: 23468090]
  48. PLoS One. 2013 Jul 04;8(7):e68910 [PMID: 23861951]
  49. Neuroimage. 2002 Jan;15(1):273-89 [PMID: 11771995]
  50. J Neurophysiol. 2009 Jun;101(6):3270-83 [PMID: 19339462]
  51. Neural Comput. 2006 Jul;18(7):1527-54 [PMID: 16764513]
  52. Proc Natl Acad Sci U S A. 2011 May 3;108(18):7641-6 [PMID: 21502525]
  53. Alzheimers Dement. 2012;8(2):131-68 [PMID: 22404854]
  54. Neuroimage. 2009 Aug 15;47(2):764-72 [PMID: 19409498]
  55. Neuroimage. 2010 Mar;50(1):81-98 [PMID: 20006716]
  56. Neuroimage. 2016 Jan 1;124(Pt A):127-46 [PMID: 25987366]
  57. Ann N Y Acad Sci. 2008 Mar;1124:1-38 [PMID: 18400922]
  58. Hum Brain Mapp. 2005 Dec;26(4):231-9 [PMID: 15954139]
  59. Med Image Anal. 2007 Feb;11(1):1-20 [PMID: 17097334]
  60. Radiology. 2002 Oct;225(1):253-9 [PMID: 12355013]
  61. Curr Opin Neurol. 2008 Aug;21(4):424-30 [PMID: 18607202]
  62. Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3107-12 [PMID: 23319621]
  63. Magn Reson Med. 1995 Oct;34(4):537-41 [PMID: 8524021]

Grants

  1. R01 EB008374/NIBIB NIH HHS
  2. R01 AG041721/NIA NIH HHS
  3. EB008374/NIBIB NIH HHS
  4. R01 AG049371/NIA NIH HHS
  5. AG042599/NIA NIH HHS
  6. R01 AG042599/NIA NIH HHS
  7. EB009634/NIBIB NIH HHS
  8. R01 EB009634/NIBIB NIH HHS
  9. AG049371/NIA NIH HHS
  10. R01 EB006733/NIBIB NIH HHS
  11. R01 EB022880/NIBIB NIH HHS
  12. AG041721/NIA NIH HHS
  13. EB006733/NIBIB NIH HHS

MeSH Term

Aged
Brain
Cognitive Dysfunction
Female
Humans
Image Interpretation, Computer-Assisted
Machine Learning
Magnetic Resonance Imaging
Male
Models, Neurological
Nerve Net
Rest

Word Cloud

Created with Highcharts 10.0.0functionalrs-fMRInetworkslearningfeaturesHMMmodelresting-statedifferentbrainregionssubjectnetworkiedynamicsinherentmodellingdeepbasedMildMCIDeepDAEHiddenMarkovestimatestatesestimatedconnectivitiesStudiesMagneticResonanceImagingshownstillactivelyinteractrestinteractionstationarychangestimetermslarge-scalepaperfocustime-varyingpatternsoneemergingissuesalongSpecificallyproposenovelmethodologicalarchitecturecombinesstate-spaceapplyCognitiveImpairmentdiagnosisfirstdeviseAuto-Encoderdiscoverhierarchicalnon-linearrelationsamongtransformregionalembeddingspacewhosebasescomplexGivenembeddeduseModeldynamiccharacteristicsviainternalunobservablecaninferredobservationsstatisticallybuildinggenerativelikelihoodinputbelongingcorrespondingstatusnormalhealthycontrolidentifyclinicallabeltestingordervalidateeffectivenessproposedmethodperformedexperimentstwodatasetscomparedstate-of-the-artmethodsliteraturealsoanalyzedlearneddecodinghiddeninvestigatedmeansgraph-theoreticapproachState-spaceestimationfMRIDynamicconnectivitycognitiveimpairmentResting-statemagneticresonanceimaging

Similar Articles

Cited By