Synaptic circuitry of identified neurons in the antennal lobe of Drosophila melanogaster.
Jürgen Rybak, Giovanni Talarico, Santiago Ruiz, Christopher Arnold, Rafael Cantera, Bill S Hansson
Author Information
Jürgen Rybak: Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany.
Giovanni Talarico: Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany.
Santiago Ruiz: Clemente Estable Institute of Biological Research, 11600 Montevideo, Uruguay.
Christopher Arnold: Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany.
Rafael Cantera: Clemente Estable Institute of Biological Research, 11600 Montevideo, Uruguay.
Bill S Hansson: Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany.
中文译文
English
In Drosophila melanogaster olfactory sensory neurons (OSNs) establish synapses with projection neurons (PNs) and local interneurons within antennal lobe (AL) glomeruli. Substantial knowledge regarding this circuitry has been obtained by functional studies, whereas ultrastructural evidence of synaptic contacts is scarce. To fill this gap, we studied serial sections of three glomeruli using electron microscopy. Ectopic expression of a membrane-bound peroxidase allowed us to map synaptic sites along PN dendrites. Our data prove for the first time that each of the three major types of AL neurons is both pre- and postsynaptic to the other two types, as previously indicated by functional studies. PN dendrites carry a large proportion of output synapses, with approximately one output per every three input synapses. Detailed reconstructions of PN dendrites showed that these synapses are distributed unevenly, with input and output sites partially segregated along a proximal-distal gradient and the thinnest branches carrying solely input synapses. Moreover, our data indicate synapse clustering, as we found evidence of dendritic tiling of PN dendrites. PN output synapses exhibited T-shaped presynaptic densities, mostly arranged as tetrads. In contrast, output synapses from putative OSNs showed elongated presynaptic densities in which the T-bar platform was supported by several pedestals and contacted as many as 20 postsynaptic profiles. We also discovered synaptic contacts between the putative OSNs. The average synaptic density in the glomerular neuropil was about two synapses/µm(3) . These results are discussed with regard to current models of olfactory glomerular microcircuits across species.
Microsc Res Tech. 2001 Dec 1;55(5):284-96
[PMID: 11754508 ]
Eur J Neurosci. 2014 Jun;39(11):1784-95
[PMID: 24698302 ]
Cell Rep. 2012 Oct 25;2(4):991-1001
[PMID: 23063364 ]
J Comp Neurol. 2012 Jul 1;520(10):2185-201
[PMID: 22237598 ]
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14615-9
[PMID: 18779570 ]
Naturwissenschaften. 2010 Dec;97(12):1059-66
[PMID: 20972770 ]
Front Syst Neurosci. 2010 Feb 12;4:5
[PMID: 20179785 ]
Nature. 2012 Mar 18;484(7393):237-41
[PMID: 22426000 ]
Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10262-7
[PMID: 20479249 ]
J Comp Neurol. 1996 Sep 02;372(4):487-514
[PMID: 8876449 ]
Brain Behav Evol. 2013;81(2):86-92
[PMID: 23363733 ]
Neural Netw. 2009 Oct;22(8):1169-73
[PMID: 19646847 ]
J Neurosci. 2007 Sep 5;27(36):9790-800
[PMID: 17804639 ]
Fly (Austin). 2010 Apr-Jun;4(2):167-71
[PMID: 20224300 ]
Prog Neurobiol. 2011 Nov;95(3):427-47
[PMID: 21963552 ]
Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10294-9
[PMID: 23729809 ]
Microsc Res Tech. 1993 Feb 15;24(3):260-80
[PMID: 8431606 ]
Neuron. 2007 Jul 5;55(1):25-36
[PMID: 17610815 ]
Curr Opin Neurobiol. 2011 Apr;21(2):254-60
[PMID: 21441021 ]
Curr Biol. 2012 May 8;22(9):R323-9
[PMID: 22575474 ]
Neuron. 2011 Dec 8;72(5):698-711
[PMID: 22153368 ]
Neuron. 2009 Feb 12;61(3):373-84
[PMID: 19217375 ]
Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):E646-54
[PMID: 21795607 ]
J Comp Neurol. 2008 Aug 10;509(5):493-513
[PMID: 18537121 ]
J Comp Neurol. 1997 Feb 17;378(3):307-19
[PMID: 9034893 ]
Neuron. 2006 Mar 16;49(6):833-44
[PMID: 16543132 ]
Nature. 2008 Apr 24;452(7190):956-60
[PMID: 18344978 ]
J Comp Neurol. 2015 Feb 15;523(3):530-44
[PMID: 25327641 ]
J Neurosci. 2009 Jul 1;29(26):8595-603
[PMID: 19571150 ]
J Neurophysiol. 2002 Feb;87(2):1106-17
[PMID: 11826074 ]
Neuron. 2002 Oct 24;36(3):463-74
[PMID: 12408848 ]
Elife. 2014 Dec 16;3:e04147
[PMID: 25512254 ]
Cell. 2012 Dec 7;151(6):1345-57
[PMID: 23217715 ]
Nature. 1997 Nov 6;390(6655):70-4
[PMID: 9363891 ]
Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13526-31
[PMID: 16938890 ]
J Comp Neurol. 1999 May 3;407(2):261-74
[PMID: 10213094 ]
Curr Biol. 2010 Sep 28;20(18):1589-601
[PMID: 20832311 ]
Front Neural Circuits. 2008 Jun 12;2:1
[PMID: 18946541 ]
J Comp Neurol. 2006 May 20;496(3):395-405
[PMID: 16566001 ]
Brain Behav Evol. 2011;77(3):136-46
[PMID: 21502750 ]
J Comp Neurol. 1991 Mar 8;305(2):232-63
[PMID: 1902848 ]
J Neurocytol. 2005 Sep;34(3-5):353-60
[PMID: 16841172 ]
Neuron. 2004 Apr 8;42(1):77-88
[PMID: 15066266 ]
J Neurosci. 1999 Jun 1;19(11):4520-32
[PMID: 10341252 ]
Front Neural Circuits. 2010 Feb 26;4:6
[PMID: 20204144 ]
Curr Biol. 2004 Apr 20;14(8):678-84
[PMID: 15084282 ]
Nat Methods. 2009 Dec;6(12):875-81
[PMID: 19898485 ]
Neuron. 2014 Feb 19;81(4):755-65
[PMID: 24559671 ]
Adv Exp Med Biol. 2008;628:102-14
[PMID: 18683641 ]
J Comp Neurol. 2009 Jul 10;515(2):161-80
[PMID: 19412930 ]
J Neurogenet. 2009;23(1-2):78-91
[PMID: 19132598 ]
J Neurosci. 2010 Jun 2;30(22):7538-53
[PMID: 20519528 ]
PLoS One. 2012;7(6):e38011
[PMID: 22723842 ]
Cell Rep. 2012 Apr 19;1(4):392-9
[PMID: 22832228 ]
Nature. 2011 Sep 28;478(7368):236-40
[PMID: 21964331 ]
J Exp Biol. 2003 Feb;206(Pt 4):715-24
[PMID: 12517989 ]
Curr Opin Neurobiol. 2011 Feb;21(1):85-92
[PMID: 21112768 ]
Front Neurosci. 2009 Sep 15;3(2):206-13
[PMID: 20011143 ]
Annu Rev Neurosci. 1997;20:595-631
[PMID: 9056726 ]
Curr Biol. 2005 Sep 6;15(17):1535-47
[PMID: 16139208 ]
J Comp Neurol. 2009 Nov 10;517(2):210-25
[PMID: 19731336 ]
J Comp Neurol. 1991 Oct 8;312(2):264-78
[PMID: 1748732 ]
Neuron. 2008 Jul 31;59(2):311-21
[PMID: 18667158 ]
Curr Biol. 2005 Sep 6;15(17):1548-53
[PMID: 16139209 ]
Dev Neurobiol. 2010 Mar;70(4):222-34
[PMID: 20029932 ]
Neuron. 2014 Jan 22;81(2):280-93
[PMID: 24462095 ]
Cell Tissue Res. 1994 Jan;275(1):3-26
[PMID: 8118845 ]
Genetics. 2014 Jan;196(1):17-29
[PMID: 24395823 ]
Brain Res Gene Expr Patterns. 2001 Aug;1(1):73-82
[PMID: 15018821 ]
J Neurosci Methods. 1996 Oct 21;69(1):59-73
[PMID: 8912936 ]
Elife. 2014 Oct 13;3:e03726
[PMID: 25310239 ]
Annu Rev Neurosci. 2007;30:505-33
[PMID: 17506643 ]
Proc Natl Acad Sci U S A. 2001 May 22;98(11):6441-6
[PMID: 11353824 ]
Neuron. 2010 Sep 23;67(6):1034-47
[PMID: 20869599 ]
J Comp Neurol. 1991 Mar 8;305(2):348-60
[PMID: 1709183 ]
Dev Neurobiol. 2007 Feb 1;67(2):123-8
[PMID: 17443777 ]
J Neurosci. 2006 Mar 29;26(13):3367-76
[PMID: 16571743 ]
Neuron. 2007 Dec 6;56(5):838-50
[PMID: 18054860 ]
Cell Rep. 2015 Mar 31;10(12):2083-95
[PMID: 25818295 ]
Cell. 2000 Jul 21;102(2):147-59
[PMID: 10943836 ]
Neuron. 2005 Nov 3;48(3):417-30
[PMID: 16269360 ]
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13070-5
[PMID: 19625621 ]
J Comp Neurol. 2008 Jun 10;508(5):711-55
[PMID: 18395827 ]
Adv Genet. 2012;80:99-151
[PMID: 23084874 ]
Curr Biol. 2005 Jun 21;15(12):1143-9
[PMID: 15964281 ]
Tissue Cell. 1991;23(3):341-55
[PMID: 18621165 ]
J Neurosci. 2011 Sep 21;31(38):13357-75
[PMID: 21940430 ]
Nat Neurosci. 2010 Apr;13(4):439-49
[PMID: 20139975 ]
J Comp Neurol. 2011 Apr 1;519(5):807-33
[PMID: 21280038 ]
Cell. 2007 Mar 23;128(6):1187-203
[PMID: 17382886 ]
Cell. 2005 Jun 3;121(5):795-807
[PMID: 15935765 ]
J Comp Neurol. 2012 Dec 15;520(18):4067-130
[PMID: 22592945 ]
J Neurosci. 2005 Oct 5;25(40):9069-79
[PMID: 16207866 ]
J Neurophysiol. 2010 Aug;104(2):1007-19
[PMID: 20505124 ]
J Neurosci. 2008 Dec 3;28(49):13075-87
[PMID: 19052198 ]
Nature. 2004 Oct 14;431(7010):854-9
[PMID: 15372051 ]
Cell. 2007 Feb 9;128(3):601-12
[PMID: 17289577 ]
Nature. 2012 May 09;485(7399):471-7
[PMID: 22622571 ]
J Comp Neurol. 2009 May 1;514(1):74-91
[PMID: 19260068 ]
Curr Biol. 2011 Jan 11;21(1):1-11
[PMID: 21129968 ]
J Neurosci. 2011 Jun 29;31(26):9696-707
[PMID: 21715635 ]
Neuron. 2004 Sep 2;43(5):703-14
[PMID: 15339651 ]
Science. 2011 Dec 16;334(6062):1565-9
[PMID: 22174254 ]
Nature. 2001 Nov 8;414(6860):204-8
[PMID: 11719930 ]
J Neurophysiol. 2013 Nov;110(10):2465-74
[PMID: 24004530 ]
J Comp Neurol. 1997 Mar 3;379(1):2-20
[PMID: 9057110 ]
Curr Biol. 2011 Dec 20;21(24):2077-84
[PMID: 22137471 ]
Nature. 2015 Mar 19;519(7543):358-61
[PMID: 25739506 ]
Nature. 2013 Aug 8;500(7461):175-81
[PMID: 23925240 ]
Learn Mem. 1998 May-Jun;5(1-2):1-10
[PMID: 10454369 ]
PLoS Biol. 2010 Oct 05;8(10):
[PMID: 20957184 ]
J Neurophysiol. 2005 Apr;93(4):2331-42
[PMID: 15537815 ]
Histochemistry. 1990;94(5):463-73
[PMID: 2283309 ]
Science. 1992 May 29;256(5061):1313-5
[PMID: 1598574 ]
Neuron. 1996 Apr;16(4):701-16
[PMID: 8607989 ]
Eur J Neurosci. 1997 Feb;9(2):319-33
[PMID: 9058052 ]
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7449-54
[PMID: 21498690 ]
Neuron. 2001 May;30(2):537-52
[PMID: 11395013 ]
Histochemistry. 1991;96(3):197-207
[PMID: 1917576 ]
Cell. 2002 Apr 19;109(2):243-55
[PMID: 12007410 ]
Nat Commun. 2015 Mar 24;6:6448
[PMID: 25800153 ]
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20553-8
[PMID: 21059961 ]
Philos Trans A Math Phys Eng Sci. 2009 Jun 13;367(1896):2387-97
[PMID: 19414461 ]
Development. 1993 Jun;118(2):401-15
[PMID: 8223268 ]
Neuron. 2008 Feb 7;57(3):353-63
[PMID: 18255029 ]
J Neurosci. 2008 Jan 16;28(3):587-97
[PMID: 18199760 ]
Nature. 2012 Dec 6;492(7427):66-71
[PMID: 23172146 ]
Nat Neurosci. 2007 Nov;10(11):1474-82
[PMID: 17922008 ]
J Comp Neurol. 2001 Aug 27;437(3):363-83
[PMID: 11494262 ]
PLoS Biol. 2004 Nov;2(11):e329
[PMID: 15514700 ]
IEEE Trans Biomed Eng. 2014 Dec;61(12):2848-58
[PMID: 24960421 ]
Synapse. 1998 May;29(1):1-13
[PMID: 9552171 ]
Curr Opin Neurobiol. 2002 Feb;12(1):80-6
[PMID: 11861168 ]
J Cell Biol. 2009 Jul 13;186(1):129-45
[PMID: 19596851 ]
Invert Neurosci. 2009 Nov;9(2):57-75
[PMID: 19756790 ]
J Neurosci. 2011 Feb 23;31(8):2734-45
[PMID: 21414896 ]
Curr Biol. 2002 Feb 5;12(3):227-31
[PMID: 11839276 ]
J Neurobiol. 1997 May;32(5):443-56
[PMID: 9110257 ]
Annu Rev Entomol. 2003;48:89-110
[PMID: 12194908 ]
J Neurosci Methods. 2007 Sep 30;165(2):210-5
[PMID: 17631969 ]
Front Syst Neurosci. 2010 Jul 13;4:
[PMID: 20827403 ]
PLoS One. 2010 Jan 22;5(1):e8853
[PMID: 20107507 ]
Microsc Res Tech. 2008 Nov;71(11):778-86
[PMID: 18785246 ]
Nature. 2012 Mar 18;484(7393):201-7
[PMID: 22425994 ]
J Ultrastruct Res. 1969 Jun;27(5):533-53
[PMID: 5803345 ]
J Neurosci. 2012 May 23;32(21):7225-31
[PMID: 22623667 ]
Cell Tissue Res. 1990 Oct;262(1):9-34
[PMID: 2124174 ]
J Neurosci Methods. 2011 Jan 15;194(2):312-5
[PMID: 21074556 ]
J Neurosci. 2008 Mar 19;28(12):2959-64
[PMID: 18353998 ]
J Neurosci. 2002 Oct 1;22(19):8514-22
[PMID: 12351725 ]
PLoS Biol. 2015 May 12;13(5):e1002147
[PMID: 25965068 ]
Cell Tissue Res. 1999 Mar;295(3):383-94
[PMID: 10022959 ]
J Neurophysiol. 2011 Apr;105(4):1711-21
[PMID: 21289134 ]
Neuron. 2008 May 8;58(3):401-13
[PMID: 18466750 ]
J Neurobiol. 2006 Dec;66(14):1544-63
[PMID: 17103386 ]
Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):3164-9
[PMID: 24516124 ]
J Comp Neurol. 1985 Nov 15;241(3):311-26
[PMID: 4086659 ]
Animals
Animals, Genetically Modified
Arthropod Antennae
Drosophila Proteins
Drosophila melanogaster
Green Fluorescent Proteins
Imaging, Three-Dimensional
Microscopy, Confocal
Microscopy, Electron, Transmission
Models, Anatomic
Neuropil
Synapses
Drosophila Proteins
Green Fluorescent Proteins