Apical control of conidiation in Aspergillus nidulans.

Elixabet Oiartzabal-Arano, Elixabet Perez-de-Nanclares-Arregi, Eduardo A Espeso, Oier Etxebeste
Author Information
  1. Elixabet Oiartzabal-Arano: Biochemistry II Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country (UPV/EHU), Manuel de Lardizabal, 3, 20018, San Sebastian, Spain.
  2. Elixabet Perez-de-Nanclares-Arregi: Biochemistry II Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country (UPV/EHU), Manuel de Lardizabal, 3, 20018, San Sebastian, Spain.
  3. Eduardo A Espeso: Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
  4. Oier Etxebeste: Biochemistry II Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country (UPV/EHU), Manuel de Lardizabal, 3, 20018, San Sebastian, Spain. oier.echeveste@ehu.eus.

Abstract

The infection cycle of filamentous fungi consists of two main stages: invasion (growth) and dispersion (development). After the deposition of a spore on a host, germination, polar extension and branching of vegetative cells called hyphae allow a fast and efficient invasion. Under suboptimal conditions, genetic reprogramming of hyphae results in the generation of asexual spores, allowing dissemination to new hosts and the beginning of a new infection cycle. In the model filamentous fungus Aspergillus nidulans, asexual development or conidiation is induced by the upstream developmental activation (UDA) pathway. UDA proteins transduce signals from the tip, the polarity site of hyphae, to nuclei, where developmental programs are transcriptionally activated. The present review summarizes the current knowledge on this tip-to-nucleus communication mechanism, emphasizing its dependence on hyphal polarity. Future approaches to the topic will also be suggested, as stimulating elements contributing to the understanding of how apical signals are coupled with the transcriptional control of development and pathogenesis in filamentous fungi.

Keywords

References

  1. Curr Genet. 1997 Sep;32(3):218-24 [PMID: 9339347]
  2. Fungal Genet Biol. 2010 Nov;47(11):900-8 [PMID: 20573560]
  3. Microbiol Mol Biol Rev. 1998 Mar;62(1):35-54 [PMID: 9529886]
  4. Mol Microbiol. 2010 Mar;75(5):1314-24 [PMID: 20132447]
  5. Eukaryot Cell. 2012 Sep;11(9):1132-42 [PMID: 22798393]
  6. BMC Genomics. 2012 Sep 27;13:511 [PMID: 23016559]
  7. Trends Genet. 2014 Sep;30(9):408-17 [PMID: 25110341]
  8. Genetics. 2014 May;197(1):159-73 [PMID: 24532783]
  9. FEMS Microbiol Rev. 2012 Jan;36(1):1-24 [PMID: 21658084]
  10. EMBO J. 1993 Jun;12(6):2449-57 [PMID: 8508770]
  11. Eukaryot Cell. 2008 Jan;7(1):141-53 [PMID: 18039943]
  12. Mol Microbiol. 2009 Jan;71(1):172-84 [PMID: 19007409]
  13. ACS Chem Biol. 2012 Mar 16;7(3):599-606 [PMID: 22234162]
  14. Eukaryot Cell. 2008 Jan;7(1):38-48 [PMID: 17993569]
  15. Curr Opin Microbiol. 2014 Aug;20:34-41 [PMID: 24879477]
  16. Mol Microbiol. 2015 Nov;98(4):607-24 [PMID: 26256571]
  17. Trends Plant Sci. 2008 May;13(5):247-55 [PMID: 18424222]
  18. Mol Microbiol. 2002 Jul;45(1):243-54 [PMID: 12100563]
  19. J Cell Sci. 2015 Oct 1;128(19):3569-82 [PMID: 26272919]
  20. Fungal Genet Biol. 2008 Jul;45(7):1053-61 [PMID: 18457967]
  21. Fungal Biol. 2011 Apr-May;115(4-5):393-400 [PMID: 21530921]
  22. Mol Microbiol. 2007 Dec;66(6):1579-96 [PMID: 18005099]
  23. Mol Microbiol. 2015 Nov;98(4):605-6 [PMID: 26387769]
  24. Microbiology. 2005 Jun;151(Pt 6):1809-21 [PMID: 15941990]
  25. Nature. 2012 Apr 11;484(7393):186-94 [PMID: 22498624]
  26. Genetics. 2015 Apr;199(4):1127-42 [PMID: 25701285]
  27. Appl Biochem Biotechnol. 2012 Jul;167(5):1235-53 [PMID: 22350934]
  28. Nat Methods. 2015 Dec;12(12):1135-8 [PMID: 26436480]
  29. Curr Genet. 2015 Aug;61(3):405-25 [PMID: 25824285]
  30. Fungal Genet Biol. 2008 Jun;45(6):897-911 [PMID: 18234530]
  31. Curr Genet. 2013 May;59(1-2):55-62 [PMID: 23385948]
  32. Fungal Genet Biol. 2014 Sep;70:33-41 [PMID: 25014896]
  33. PLoS One. 2011 Mar 10;6(3):e17505 [PMID: 21423749]
  34. PLoS One. 2015 Sep 11;10(9):e0137554 [PMID: 26359867]
  35. Nat Rev Genet. 2012 Sep;13(9):613-26 [PMID: 22868264]
  36. Annu Rev Microbiol. 2013;67:587-609 [PMID: 23808332]
  37. Mol Microbiol. 1993 Apr;8(2):211-8 [PMID: 8316075]
  38. PLoS One. 2007 Oct 03;2(10):e970 [PMID: 17912349]
  39. Genetics. 2014 Aug;197(4):1175-89 [PMID: 24907261]
  40. Curr Protein Pept Sci. 2010 Dec;11(8):704-18 [PMID: 21235506]
  41. Microbiology. 1996 Nov;142 ( Pt 11):3211-8 [PMID: 8969518]
  42. Curr Opin Microbiol. 2012 Dec;15(6):669-77 [PMID: 23092920]
  43. Mol Microbiol. 2010 Sep;77(5):1203-19 [PMID: 20624219]
  44. Mol Microbiol. 2009 Sep;73(5):775-89 [PMID: 19656299]
  45. Curr Genet. 1994 Dec;27(1):62-9 [PMID: 7750148]
  46. Plant Cell. 1990 Aug;2(8):731-9 [PMID: 2152124]
  47. Evolution. 2015 Oct;69(10 ):2573-86 [PMID: 26315993]

MeSH Term

Animals
Aspergillus nidulans
Cell Nucleus
Hyphae
Life Cycle Stages

Word Cloud

Created with Highcharts 10.0.0developmentalfilamentousfungidevelopmenthyphaeinfectioncycleinvasiongrowthasexualnewAspergillusnidulansconidiationactivationUDApathwaysignalspolaritycontrolconsiststwomainstages:dispersiondepositionsporehostgerminationpolarextensionbranchingvegetativecellscalledallowfastefficientsuboptimalconditionsgeneticreprogrammingresultsgenerationsporesallowingdisseminationhostsbeginningmodelfungusinducedupstreamproteinstransducetipsitenucleiprogramstranscriptionallyactivatedpresentreviewsummarizescurrentknowledgetip-to-nucleuscommunicationmechanismemphasizingdependencehyphalFutureapproachestopicwillalsosuggestedstimulatingelementscontributingunderstandingapicalcoupledtranscriptionalpathogenesisApicalAsexualreproductionCentralConidiationFilamentousPolarUpstream

Similar Articles

Cited By