Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach.

Zaixu Cui, Zhichao Xia, Mengmeng Su, Hua Shu, Gaolang Gong
Author Information
  1. Zaixu Cui: State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
  2. Zhichao Xia: State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
  3. Mengmeng Su: State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
  4. Hua Shu: State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
  5. Gaolang Gong: State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.

Abstract

Developmental dyslexia has been hypothesized to result from multiple causes and exhibit multiple manifestations, implying a distributed multidimensional effect on human brain. The disruption of specific white-matter (WM) tracts/regions has been observed in dyslexic children. However, it remains unknown if developmental dyslexia affects the human brain WM in a multidimensional manner. Being a natural tool for evaluating this hypothesis, the multivariate machine learning approach was applied in this study to compare 28 school-aged dyslexic children with 33 age-matched controls. Structural magnetic resonance imaging (MRI) and diffusion tensor imaging were acquired to extract five multitype WM features at a regional level: white matter volume, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. A linear support vector machine (LSVM) classifier achieved an accuracy of 83.61% using these MRI features to distinguish dyslexic children from controls. Notably, the most discriminative features that contributed to the classification were primarily associated with WM regions within the putative reading network/system (e.g., the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, thalamocortical projections, and corpus callosum), the limbic system (e.g., the cingulum and fornix), and the motor system (e.g., the cerebellar peduncle, corona radiata, and corticospinal tract). These results were well replicated using a logistic regression classifier. These findings provided direct evidence supporting a multidimensional effect of developmental dyslexia on WM connectivity of human brain, and highlighted the involvement of WM tracts/regions beyond the well-recognized reading system in dyslexia. Finally, the discriminating results demonstrated a potential of WM neuroimaging features as imaging markers for identifying dyslexic individuals.

Keywords

References

  1. Neuroimage. 2003 Oct;20(2):693-712 [PMID: 14568445]
  2. Biol Psychiatry. 2003 Jul 1;54(1):25-33 [PMID: 12842305]
  3. J Abnorm Psychol. 2012 Feb;121(1):212-24 [PMID: 22022952]
  4. Annu Rev Psychol. 2009;60:283-306 [PMID: 18652545]
  5. Neuroimage. 2008 Apr 1;40(2):570-582 [PMID: 18255316]
  6. J Child Psychol Psychiatry. 2011 May;52(5):547-57 [PMID: 21126246]
  7. Neuroimage. 2009 Mar;45(1 Suppl):S199-209 [PMID: 19070668]
  8. Hum Brain Mapp. 2011 Aug;32(8):1220-35 [PMID: 20665719]
  9. Cereb Cortex. 2008 Feb;18(2):433-42 [PMID: 17575289]
  10. Neurobiol Aging. 2008 Jan;29(1):102-16 [PMID: 17023094]
  11. Hum Brain Mapp. 2014 Jun;35(6):2643-51 [PMID: 24048702]
  12. Brain. 2005 Oct;128(Pt 10):2453-61 [PMID: 15975942]
  13. Science. 2009 Jul 17;325(5938):280-3 [PMID: 19608907]
  14. Brain. 2010 Jun;133(Pt 6):1694-706 [PMID: 20488886]
  15. Psychol Sci. 2014 Oct;25(10):1870-83 [PMID: 25212581]
  16. PLoS One. 2013;8(2):e55454 [PMID: 23408984]
  17. Curr Opin Neurobiol. 2013 Apr;23(2):261-8 [PMID: 23312307]
  18. J Child Neurol. 2008 Apr;23(4):368-80 [PMID: 18160557]
  19. Lancet. 2012 May 26;379(9830):1997-2007 [PMID: 22513218]
  20. Neuroimage. 2011 Feb 1;54(3):1812-22 [PMID: 20970508]
  21. J Child Psychol Psychiatry. 2013 Jun;54(6):686-94 [PMID: 23227813]
  22. J Neurosci. 2013 Mar 13;33(11):5017-26 [PMID: 23486972]
  23. Front Hum Neurosci. 2014 May 20;8:347 [PMID: 24904383]
  24. J Neurosci. 2014 Jan 15;34(3):901-8 [PMID: 24431448]
  25. Mol Psychiatry. 2011 Apr;16(4):365-82 [PMID: 20956978]
  26. Neurosci Biobehav Rev. 2012 Feb;36(2):757-63 [PMID: 22192882]
  27. J Child Psychol Psychiatry. 2009 Aug;50(8):893-901 [PMID: 19490310]
  28. Nature. 2014 Aug 14;512(7513):185-9 [PMID: 25043041]
  29. Neuroimage. 2014 Jan 1;84:466-75 [PMID: 24045077]
  30. Exp Brain Res. 1989;74(1):173-86 [PMID: 2924834]
  31. J Exp Child Psychol. 2009 Jun;103(2):135-51 [PMID: 19304294]
  32. Pediatrics. 1999 Dec;104(6):1351-9 [PMID: 10585988]
  33. Brain. 2011 Dec;134(Pt 12):3742-54 [PMID: 22006979]
  34. Curr Opin Neurobiol. 2007 Apr;17(2):258-70 [PMID: 17379499]
  35. Science. 2010 Sep 10;329(5997):1358-61 [PMID: 20829489]
  36. Cognition. 2004 May-Jun;92(1-2):231-70 [PMID: 15037131]
  37. Neuropsychologia. 2013 Jun;51(7):1169-76 [PMID: 23542499]
  38. Cortex. 2010 Jun;46(6):739-49 [PMID: 19682675]
  39. Psychol Med. 2011 Jul;41(7):1539-50 [PMID: 21078227]
  40. J Child Psychol Psychiatry. 2011 Feb;52(2):212-20 [PMID: 20854364]
  41. Magn Reson Imaging. 2006 Apr;24(3):217-29 [PMID: 16563950]
  42. J Psycholinguist Res. 2013 Oct;42(5):433-50 [PMID: 22923217]
  43. Hum Brain Mapp. 2015 Dec;36(12):4880-96 [PMID: 26368659]
  44. Neuroimage. 2005 May 1;25(4):1266-71 [PMID: 15850744]
  45. Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10389-94 [PMID: 20498069]
  46. Nat Rev Neurosci. 2006 Jul;7(7):523-34 [PMID: 16791142]
  47. Nature. 2004 Sep 2;431(7004):71-6 [PMID: 15343334]
  48. Dev Cogn Neurosci. 2015 Jun;13:68-74 [PMID: 26011750]
  49. Neuroimage. 2011 Feb 1;54(3):2426-36 [PMID: 20934519]
  50. Ann Neurol. 1990 Dec;28(6):727-38 [PMID: 2285260]
  51. J Child Neurol. 2005 Oct;20(10):842-7 [PMID: 16417884]
  52. Trends Neurosci. 2001 Sep;24(9):508-11 [PMID: 11506881]
  53. Brain. 1996 Feb;119 ( Pt 1):143-57 [PMID: 8624677]
  54. Neuroimage. 2004 Sep;23(1):17-20 [PMID: 15325347]
  55. Trends Neurosci. 2007 Apr;30(4):135-41 [PMID: 17328970]
  56. J Exp Child Psychol. 2007 Feb;96(2):150-66 [PMID: 17145064]
  57. Radiology. 2009 Jun;251(3):882-91 [PMID: 19346513]
  58. Neuroimage. 2002 Jul;16(3 Pt 1):765-80 [PMID: 12169260]
  59. Brain. 2003 Feb;126(Pt 2):482-94 [PMID: 12538414]
  60. Neurocase. 2011 Oct;17(5):425-39 [PMID: 21590585]
  61. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8939-44 [PMID: 9671783]
  62. Hum Brain Mapp. 2015 Apr;36(4):1536-53 [PMID: 25504986]
  63. J Neurosci. 2010 Aug 11;30(32):10612-23 [PMID: 20702694]
  64. Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):361-6 [PMID: 21173250]
  65. Hum Brain Mapp. 2005 May;25(1):83-91 [PMID: 15846817]
  66. Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):E3045-53 [PMID: 23045658]
  67. Science. 2013 Dec 6;342(6163):1251-4 [PMID: 24311693]
  68. Psychol Sci. 2011 Nov;22(11):1442-51 [PMID: 22006060]
  69. Neurosci Biobehav Rev. 2012 Jul;36(6):1532-52 [PMID: 22516793]
  70. Neuroimage. 2011 Jun 1;56(3):1735-42 [PMID: 21338695]
  71. Behav Neurosci. 2007 Jun;121(3):602-13 [PMID: 17592952]
  72. J Child Lang. 2006 Feb;33(1):145-61 [PMID: 16566324]
  73. Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5561-6 [PMID: 18391194]
  74. BMC Neurosci. 2009 Jun 25;10:67 [PMID: 19555471]
  75. Front Aging Neurosci. 2015 Jan 14;6:343 [PMID: 25642186]
  76. Neuroimage. 2012 Feb 1;59(3):2187-95 [PMID: 22008370]
  77. Cerebellum. 2013 Dec;12(6):906-15 [PMID: 23828023]
  78. Neuropsychologia. 1971 Mar;9(1):97-113 [PMID: 5146491]
  79. Cortex. 2011 Jan;47(1):101-16 [PMID: 20060110]
  80. Neuron. 2000 Feb;25(2):493-500 [PMID: 10719902]
  81. Biol Psychiatry. 2014 Sep 1;76(5):397-404 [PMID: 24124929]
  82. Ann Neurol. 1985 Aug;18(2):222-33 [PMID: 4037763]
  83. Front Hum Neurosci. 2013 Feb 21;7:42 [PMID: 23439846]
  84. Cortex. 2005 Jun;41(3):354-63 [PMID: 15871600]
  85. PLoS One. 2012;7(11):e50321 [PMID: 23209710]
  86. JAMA Psychiatry. 2015 Jan;72(1):68-74 [PMID: 25409415]
  87. Neuropsychologia. 2006;44(11):2178-88 [PMID: 16524602]
  88. Brain. 2012 Mar;135(Pt 3):935-48 [PMID: 22327793]
  89. Neuropsychologia. 2010 Jan;48(1):309-18 [PMID: 19782695]
  90. Child Dev. 2003 Jan-Feb;74(1):27-47 [PMID: 12625434]
  91. Cereb Cortex. 2015 Oct;25(10):3502-14 [PMID: 25169986]
  92. Cognition. 2006 Sep;101(2):385-413 [PMID: 16844106]
  93. Epilepsia. 2013 Jul;54(7):1143-53 [PMID: 23614459]
  94. Neuroimage. 2005 Dec;28(4):980-95 [PMID: 16275139]
  95. J Child Psychol Psychiatry. 2012 Aug;53(8):874-82 [PMID: 22489956]
  96. Neuroimage. 2005 Jul 1;26(3):839-51 [PMID: 15955494]
  97. Ment Retard Dev Disabil Res Rev. 2000;6(3):207-13 [PMID: 10982498]
  98. Brain. 2012 May;135(Pt 5):1498-507 [PMID: 22418737]
  99. Neuroreport. 2008 Oct 29;19(16):1627-31 [PMID: 18806688]
  100. Ann Neurol. 1980 May;7(5):421-8 [PMID: 7396421]
  101. J Neurosci. 2013 Jul 31;33(31):12835-43 [PMID: 23904618]
  102. JAMA. 1990 Aug 22-29;264(8):998-1002 [PMID: 2376893]
  103. Neuropsychologia. 2008 Nov;46(13):3170-8 [PMID: 18692514]
  104. NMR Biomed. 2002 Nov-Dec;15(7-8):435-55 [PMID: 12489094]
  105. Biol Psychiatry. 2005 Jun 1;57(11):1301-9 [PMID: 15950002]
  106. Cortex. 2010 Nov-Dec;46(10):1345-61 [PMID: 20828676]

Grants

  1. U01 AA020912/NIAAA NIH HHS

MeSH Term

Adolescent
Child
Cohort Studies
Diffusion Tensor Imaging
Dyslexia
Female
Humans
Machine Learning
Male
Nerve Net
Psychomotor Performance
White Matter

Word Cloud

Created with Highcharts 10.0.0WMdyslexiadyslexicdevelopmentalmachineimagingfeaturesmultidimensionalhumanbrainchildrenlearningdiffusivityegsystemconnectivitymultipleeffectwhite-mattertracts/regionsapproachcontrolsmagneticresonanceMRIwhitematterclassifierusingclassificationreadingfasciculusresultsDevelopmentalhypothesizedresultcausesexhibitmanifestationsimplyingdistributeddisruptionspecificobservedHoweverremainsunknownaffectsmannernaturaltoolevaluatinghypothesismultivariateappliedstudycompare28school-aged33age-matchedStructuraldiffusiontensoracquiredextractfivemultityperegionallevel:volumefractionalanisotropymeanaxialradiallinearsupportvectorLSVMachievedaccuracy8361%distinguishNotablydiscriminativecontributedprimarilyassociatedregionswithinputativenetwork/systemsuperiorlongitudinalinferiorfronto-occipitalthalamocorticalprojectionscorpuscallosumlimbiccingulumfornixmotorcerebellarpedunclecoronaradiatacorticospinaltractwellreplicatedlogisticregressionfindingsprovideddirectevidencesupportinghighlightedinvolvementbeyondwell-recognizedFinallydiscriminatingdemonstratedpotentialneuroimagingmarkersidentifyingindividualsDisruptedunderlyingdyslexia:

Similar Articles

Cited By