Cortical hierarchy governs rat claustrocortical circuit organization.

Michael G White, Patrick A Cody, Michael Bubser, Hui-Dong Wang, Ariel Y Deutch, Brian N Mathur
Author Information
  1. Michael G White: Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, 21201.
  2. Patrick A Cody: Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.
  3. Michael Bubser: Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232.
  4. Hui-Dong Wang: Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee, 37232.
  5. Ariel Y Deutch: Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232.
  6. Brian N Mathur: Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, 21201.

Abstract

The claustrum is a telencephalic gray matter structure with various proposed functions, including sensory integration and attentional allocation. Underlying these concepts is the reciprocal connectivity of the claustrum with most, if not all, areas of the cortex. What remains to be elucidated to inform functional hypotheses further is whether a pattern exists in the strength of connectivity between a given cortical area and the claustrum. To this end, we performed a series of retrograde neuronal tract tracer injections into rat cortical areas along the cortical processing hierarchy, from primary sensory and motor to frontal cortices. We observed that the number of claustrocortical projections increased as a function of processing hierarchy; claustrum neurons projecting to primary sensory cortices were scant and restricted in distribution across the claustrum, whereas neurons projecting to the cingulate cortex were densely packed and more evenly distributed throughout the claustrum. This connectivity pattern suggests that the claustrum may preferentially subserve executive functions orchestrated by the cingulate cortex. J. Comp. Neurol. 525:1347-1362, 2017. © 2016 Wiley Periodicals, Inc.

Keywords

References

  1. J Comp Neurol. 1995 Feb 20;352(4):567-93 [PMID: 7722001]
  2. Nature. 1980 Dec 4;288(5790):479-81 [PMID: 7442793]
  3. Front Syst Neurosci. 2014 Jul 03;8:123 [PMID: 25071475]
  4. J Biol Chem. 1987 May 25;262(15):7314-20 [PMID: 3294830]
  5. Exp Neurol. 1984 Mar;83(3):468-85 [PMID: 6199226]
  6. Nat Neurosci. 2000 May;3(5):502-8 [PMID: 10769392]
  7. J Neurosci. 1981 Sep;1(9):956-80 [PMID: 6169810]
  8. Exp Brain Res. 1994;101(1):8-23 [PMID: 7843305]
  9. Brain Res. 1991 Jul 12;553(2):309-12 [PMID: 1718545]
  10. J Comp Neurol. 1983 Apr 1;215(2):121-134 [PMID: 6853768]
  11. Neurosci Lett. 1984 Aug 31;49(3):247-52 [PMID: 6493606]
  12. Synapse. 1996 Jul;23(3):182-91 [PMID: 8807746]
  13. Eur J Neurosci. 2008 Dec;28(12):2486-98 [PMID: 19032585]
  14. Front Syst Neurosci. 2014 Jul 02;8:117 [PMID: 25071474]
  15. PLoS One. 2012;7(9):e44745 [PMID: 22957104]
  16. Neurosci Lett. 1980 Oct 2;19(3):271-5 [PMID: 6189028]
  17. Brain Res Bull. 1986 Oct;17(4):529-32 [PMID: 3779451]
  18. J Hirnforsch. 1990;31(4):487-94 [PMID: 1701467]
  19. Proc Natl Acad Sci U S A. 1990 Jan;87(1):256-9 [PMID: 2296583]
  20. J Comp Neurol. 2007 Jan 1;500(1):20-46 [PMID: 17099894]
  21. Brain Res. 1982 Feb 25;234(2):435-41 [PMID: 6800568]
  22. J Comp Neurol. 1982 Nov 20;212(1):23-37 [PMID: 7174906]
  23. J Hirnforsch. 1982;23(2):191-202 [PMID: 7108198]
  24. J Comp Neurol. 1986 Apr 22;246(4):467-77 [PMID: 2422230]
  25. Hum Brain Mapp. 2015 Mar;36(3):827-38 [PMID: 25339630]
  26. Science. 1998 Nov 13;282(5392):1335-8 [PMID: 9812901]
  27. J Physiol Sci. 2015 Nov;65(6):533-44 [PMID: 26329935]
  28. J Comp Neurol. 2008 May 20;508(3):402-17 [PMID: 18335537]
  29. J Neurosci. 2002 Feb 1;22(3):1155-64 [PMID: 11826144]
  30. J Neurosci Methods. 1999 Oct 15;92(1-2):137-44 [PMID: 10595711]
  31. Trends Neurosci. 2015 Aug;38(8):486-95 [PMID: 26116988]
  32. Nature. 2007 Jan 11;445(7124):168-76 [PMID: 17151600]
  33. Brain Struct Funct. 2008 Feb;212(5):387-401 [PMID: 18183420]
  34. Front Syst Neurosci. 2014 Feb 28;8:31 [PMID: 24616671]
  35. Brain Struct Funct. 2009 Sep;213(4-5):423-39 [PMID: 19672624]
  36. J Neurosci. 2012 Jun 20;32(25):8583-8 [PMID: 22723699]
  37. Front Syst Neurosci. 2014 May 14;8:78 [PMID: 24860441]
  38. J Comp Neurol. 1983 May 10;216(2):192-210 [PMID: 6863602]
  39. J Neurosci. 1998 Feb 1;18(3):1072-84 [PMID: 9437027]
  40. Front Syst Neurosci. 2014 Apr 04;8:48 [PMID: 24772070]
  41. J Neurosci Methods. 1980 Dec;3(2):129-49 [PMID: 6110810]
  42. Behav Brain Res. 1990 Nov 30;40(3):169-92 [PMID: 2178346]
  43. Neuroreport. 1999 Feb 25;10(3):625-30 [PMID: 10208601]
  44. J Comp Neurol. 1992 Jan 8;315(2):200-16 [PMID: 1545009]
  45. Exp Brain Res. 1979 Jan 2;34(1):197-200 [PMID: 83241]
  46. J Comp Neurol. 2009 Aug 10;515(5):548-64 [PMID: 19479997]
  47. Front Syst Neurosci. 2014 May 19;8:93 [PMID: 24904315]
  48. Neurosci Lett. 1980 Oct 20;20(1):5-10 [PMID: 7052548]
  49. Brain Res. 1986 Jan;389(1-2):99-108 [PMID: 3948021]
  50. J Comp Neurol. 2002 Dec 9;454(2):140-57 [PMID: 12412139]
  51. Nature. 1981 Sep 24;293(5830):300-2 [PMID: 7278987]
  52. Brain Res. 1985 Mar 11;329(1-2):185-93 [PMID: 3978440]
  53. J Neurosci. 2010 Dec 15;30(50):16832-44 [PMID: 21159954]
  54. Philos Trans R Soc Lond B Biol Sci. 2005 Jun 29;360(1458):1271-9 [PMID: 16147522]
  55. Eur J Neurosci. 2005 Jun;21(12):3447-52 [PMID: 16026482]
  56. Cereb Cortex. 2009 Oct;19(10):2372-9 [PMID: 19168664]
  57. Front Neuroanat. 2012 Jun 11;6:21 [PMID: 22707933]
  58. J Neurosci. 1991 Aug;11(8):2383-402 [PMID: 1869921]
  59. Brain Res. 1997 May 9;756(1-2):147-52 [PMID: 9187325]
  60. Arch Histol Jpn. 1977 Feb;40(1):1-10 [PMID: 69423]
  61. Exp Brain Res. 1997 Mar;113(3):564-8 [PMID: 9108221]
  62. Brain Struct Funct. 2007 Sep;212(2):149-79 [PMID: 17717690]
  63. J Neurosci. 2010 Sep 29;30(39):12902-7 [PMID: 20881109]
  64. Neurosci Lett. 1984 Aug 24;49(1-2):29-32 [PMID: 6436755]
  65. Neuron. 2008 Jan 24;57(2):314-25 [PMID: 18215627]
  66. J Comp Neurol. 1978 Feb 1;177(3):435-44 [PMID: 412882]
  67. Behav Neurosci. 2001 Feb;115(1):3-25 [PMID: 11256450]
  68. J Comp Neurol. 2006 Feb 1;494(4):673-85 [PMID: 16374796]
  69. Cereb Cortex. 2002 Dec;12(12):1254-68 [PMID: 12427677]
  70. J Comp Neurol. 1981 Feb 1;195(4):681-95 [PMID: 6161950]

Grants

  1. T32 MH064913/NIMH NIH HHS
  2. K22 AA021414/NIAAA NIH HHS
  3. T32 GM008181/NIGMS NIH HHS
  4. U54 HD083211/NICHD NIH HHS
  5. R21 DA026880/NIDA NIH HHS
  6. T32 NS063391/NINDS NIH HHS

MeSH Term

Animals
Basal Ganglia
Immunohistochemistry
Male
Neural Pathways
Neurons
Rats
Rats, Sprague-Dawley

Word Cloud

Created with Highcharts 10.0.0claustrumconnectivitycortexsensorycorticalhierarchycingulatefunctionsareaspatternretrograderatprocessingprimarycorticesclaustrocorticalneuronsprojectingtelencephalicgraymatterstructurevariousproposedincludingintegrationattentionalallocationUnderlyingconceptsreciprocalremainselucidatedinformfunctionalhypotheseswhetherexistsstrengthgivenareaendperformedseriesneuronaltracttracerinjectionsalongmotorfrontalobservednumberprojectionsincreasedfunctionscantrestricteddistributionacrosswhereasdenselypackedevenlydistributedthroughoutsuggestsmaypreferentiallysubserveexecutiveorchestratedJCompNeurol525:1347-13622017©2016WileyPeriodicalsIncCorticalgovernscircuitorganizationAB_10000344AB_10000345AB_10013220AB_2313584AB_2314408AB_2314412AB_2337244AB_2340428AB_2340433AB_2340602AB_2340806AB_2341099AB_477329RGD_737903anterogradenif-0000-00110

Similar Articles

Cited By