Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli.

Katia Pane, Lorenzo Durante, Elio Pizzo, Mario Varcamonti, Anna Zanfardino, Valeria Sgambati, Antimo Di Maro, Andrea Carpentieri, Viviana Izzo, Alberto Di Donato, Valeria Cafaro, Eugenio Notomista
Author Information
  1. Katia Pane: Department of Biology, Universit�� degli Studi di Napoli Federico II, Napoli, Italy.
  2. Lorenzo Durante: Department of Biology, Universit�� degli Studi di Napoli Federico II, Napoli, Italy.
  3. Elio Pizzo: Department of Biology, Universit�� degli Studi di Napoli Federico II, Napoli, Italy.
  4. Mario Varcamonti: Department of Biology, Universit�� degli Studi di Napoli Federico II, Napoli, Italy.
  5. Anna Zanfardino: Department of Biology, Universit�� degli Studi di Napoli Federico II, Napoli, Italy.
  6. Valeria Sgambati: Department of Biology, Universit�� degli Studi di Napoli Federico II, Napoli, Italy.
  7. Antimo Di Maro: Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Seconda Universit�� di Napoli, Caserta, Italy.
  8. Andrea Carpentieri: Department of Chemical Sciences, Universit�� degli Studi di Napoli Federico II, Napoli, Italy.
  9. Viviana Izzo: Department of Medicine and Surgery, Universit�� degli Studi di Salerno, Baronissi, Italy.
  10. Alberto Di Donato: Department of Biology, Universit�� degli Studi di Napoli Federico II, Napoli, Italy.
  11. Valeria Cafaro: Department of Biology, Universit�� degli Studi di Napoli Federico II, Napoli, Italy.
  12. Eugenio Notomista: Department of Biology, Universit�� degli Studi di Napoli Federico II, Napoli, Italy.

Abstract

Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200-250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15-18 mg of recombinant peptide per liter of culture with 96-98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods.

References

  1. Biochim Biophys Acta. 2004 Jan 28;1660(1-2):53-65 [PMID: 14757220]
  2. J Pept Sci. 2014 Oct;20(10):760-84 [PMID: 25112216]
  3. Curr Protoc Protein Sci. 2001 May;Chapter 11:Unit 11.5 [PMID: 18429104]
  4. Biochemistry. 2000 Aug 1;39(30):8711-8 [PMID: 10913282]
  5. Anal Biochem. 1980 Sep 1;107(1):21-4 [PMID: 6159805]
  6. FEBS Lett. 2014 Jan 21;588(2):247-52 [PMID: 24076468]
  7. Methods Enzymol. 1977;47:145-9 [PMID: 22018]
  8. Prion. 2009 Jul-Sep;3(3):139-45 [PMID: 19806034]
  9. Biotechniques. 2000 Dec;29(6):1234-8 [PMID: 11126126]
  10. Antimicrob Agents Chemother. 2011 Jun;55(6):2880-90 [PMID: 21402837]
  11. Can J Microbiol. 2007 Nov;53(11):1246-58 [PMID: 18026219]
  12. Biotechnol Appl Biochem. 2009 Jul 06;54(1):1-9 [PMID: 19575694]
  13. Nat Protoc. 2008;3(2):163-75 [PMID: 18274517]
  14. J Ind Microbiol Biotechnol. 2015 Oct;42(10):1369-76 [PMID: 26299602]
  15. Protein Expr Purif. 2011 Dec;80(2):260-7 [PMID: 21843642]
  16. Nature. 1970 Aug 15;227(5259):680-5 [PMID: 5432063]
  17. Biochim Biophys Acta. 2006 Sep;1758(9):1351-8 [PMID: 16542635]
  18. Microb Cell Fact. 2014 May 07;13:65 [PMID: 24885242]
  19. Biotechnol Appl Biochem. 2007 May;47(Pt 1):1-9 [PMID: 17432953]
  20. Biotechnol Bioeng. 2015 May;112(5):957-64 [PMID: 25425208]
  21. PLoS Pathog. 2010 Apr 22;6(4):e1000857 [PMID: 20421939]
  22. J Biol Chem. 1987 Jul 25;262(21):10035-8 [PMID: 3611052]
  23. Microb Cell Fact. 2015 Mar 25;14:41 [PMID: 25889252]
  24. FEBS J. 2008 Mar;275(6):1283-95 [PMID: 18279393]
  25. Int J Pharm. 2004 Apr 1;273(1-2):213-9 [PMID: 15010145]
  26. Am J Physiol Gastrointest Liver Physiol. 2014 Nov 1;307(9):G914-21 [PMID: 25214403]
  27. Protein Expr Purif. 2007 Jul;54(1):157-65 [PMID: 17382559]
  28. PLoS One. 2014 Jul 28;9(7):e103456 [PMID: 25068263]
  29. Biochemistry. 2001 Aug 7;40(31):9097-103 [PMID: 11478876]
  30. Curr Microbiol. 2007 May;54(5):366-70 [PMID: 17486407]
  31. Nat Chem Biol. 2013 Dec;9(12):761-8 [PMID: 24231617]
  32. Protein Expr Purif. 2006 May;47(1):110-7 [PMID: 16216526]
  33. Methods Mol Biol. 2010;634:137-46 [PMID: 20676981]
  34. J Pharm Biomed Anal. 2009 Aug 15;50(1):73-8 [PMID: 19395214]
  35. Biochim Biophys Acta. 2009 Feb;1788(2):314-23 [PMID: 19026609]
  36. Nat Rev Drug Discov. 2011 Dec 16;11(1):37-51 [PMID: 22173434]
  37. J Pept Sci. 2009 Apr;15(4):278-84 [PMID: 19189273]
  38. Protein Expr Purif. 2006 Jun;47(2):498-505 [PMID: 16325420]
  39. J Phys Chem B. 2006 Jun 29;110(25):12621-5 [PMID: 16800593]
  40. Appl Microbiol Biotechnol. 2011 Oct;92(1):85-93 [PMID: 21655979]
  41. Acta Chem Scand (Cph). 1999 Dec;53(12):1122-6 [PMID: 10629937]
  42. Virulence. 2010 Sep-Oct;1(5):440-64 [PMID: 21178486]
  43. Front Microbiol. 2013 Oct 01;4:294 [PMID: 24101917]
  44. Appl Environ Microbiol. 2004 Jun;70(6):3292-7 [PMID: 15184123]
  45. Appl Microbiol Biotechnol. 2009 May;83(1):143-9 [PMID: 19205689]
  46. Protein Expr Purif. 2003 Jan;27(1):98-103 [PMID: 12509990]
  47. Methods Mol Biol. 2010;618:61-76 [PMID: 20094858]
  48. Biopolymers. 2009;92(6):573-95 [PMID: 19795449]
  49. Methods Enzymol. 1977;47:132-45 [PMID: 927171]
  50. J Pharm Sci. 2005 Sep;94(9):1912-27 [PMID: 16052557]
  51. FEBS Lett. 1999 Dec 17;463(3):211-5 [PMID: 10606723]
  52. Nano Lett. 2012 May 9;12(5):2342-6 [PMID: 22471315]

MeSH Term

Antimicrobial Cationic Peptides
Carrier Proteins
Escherichia coli
Humans
Recombinant Proteins
Ribonucleases

Chemicals

Antimicrobial Cationic Peptides
Carrier Proteins
Recombinant Proteins
Ribonucleases
ranpirnase

Word Cloud

Created with Highcharts 10.0.0peptidespeptideproductioncleavageacidrecombinantantimicrobialcarrierGKY20OnconasemethodsproteinhighEscherichiacoliwellsuitedC-terminuspurificationchemicallabileAsp-ProsequencespHimprovedprolineCommercialusesbioactiverequirelowcosteffectivedevelopednewyieldtoxiclikeshortderivedhumanthrombinfusedsmallribonuclease104aminoacidsefficientlydroveinclusionbodiesexpressionlevels200-250mg/Lfusionimmobilizedmetalionaffinitychromatographyobtaineddilutedaceticsequence95%efficiencyimprovemutatedeliminatethusreducingreleaseunwantedMutationschosenpreservedifferentialsolubilityfunctionallowsselectiveprecipitationneutralallowed15-18mgperliterculture96-98%puritywithoutneedchromatographicstepsactivityadditionalN-terminustestedGram-negativeGram-positivestrainsfoundidenticalmeasuredsyntheticfindingsuggestsN-terminalresiduechangepropertiesPcontaincysteinemethionineresiduesAsn-GlyusingpopularRationalDesignCarrierProteinProductionRecombinantToxicPeptides

Similar Articles

Cited By