Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments.

Juan Wang, Christopher E Smith, Jagannathan Sankar, Yeoheung Yun, Nan Huang
Author Information
  1. Juan Wang: Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China and National Science Foundation Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A & T State University, Greensboro, NC 27411, USA.
  2. Christopher E Smith: Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China and National Science Foundation Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A & T State University, Greensboro, NC 27411, USA.
  3. Jagannathan Sankar: Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China and National Science Foundation Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A & T State University, Greensboro, NC 27411, USA.
  4. Yeoheung Yun: Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China and National Science Foundation Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A & T State University, Greensboro, NC 27411, USA.
  5. Nan Huang: Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China and National Science Foundation Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A & T State University, Greensboro, NC 27411, USA.

Abstract

Absorbable metals have been widely tested in various in vitro settings using cells to evaluate their possible suitability as an implant material. However, there exists a gap between in vivo and in vitro test results for absorbable materials. A lot of traditional in vitro assessments for permanent materials are no longer applicable to absorbable metallic implants. A key step is to identify and test the relevant microenvironment and parameters in test systems, which should be adapted according to the specific application. New test methods are necessary to reduce the difference between in vivo and in vitro test results and provide more accurate information to better understand absorbable metallic implants. In this investigative review, we strive to summarize the latest test methods for characterizing absorbable magnesium-based stent for bioabsorption/biodegradation behavior in the mimicking vascular environments. Also, this article comprehensively discusses the direction of test standardization for absorbable stents to paint a more accurate picture of the in vivo condition around implants to determine the most important parameters and their dynamic interactions.

Keywords

References

  1. Acta Biomater. 2014 May;10(5):2313-22 [PMID: 24412771]
  2. J Biomed Mater Res B Appl Biomater. 2011 Nov;99(2):276-81 [PMID: 21714090]
  3. J Biomed Mater Res A. 2013 Jul;101(7):1898-906 [PMID: 23203562]
  4. Acta Biomater. 2013 Nov;9(10):8730-9 [PMID: 23128160]
  5. Ann Biomed Eng. 2003 Sep;31(8):972-80 [PMID: 12918912]
  6. Acta Biomater. 2010 May;6(5):1749-55 [PMID: 20051271]
  7. Arterioscler Thromb Vasc Biol. 1999 Dec;19(12 ):2933-9 [PMID: 10591672]
  8. J Biomed Mater Res A. 2008 Apr;85(1):167-75 [PMID: 17688266]
  9. JAMA. 1999 Dec 1;282(21):2035-42 [PMID: 10591386]
  10. J Colloid Interface Sci. 2013 Mar 1;393:421-8 [PMID: 23245884]
  11. Cardiovasc Res. 1998 Aug;39(2):515-22 [PMID: 9798536]
  12. J Biomed Mater Res A. 2014 Mar;102(3):781-92 [PMID: 23564415]
  13. Lancet. 2013 Mar 9;381(9869):836-44 [PMID: 23332165]
  14. Acta Biomater. 2013 Nov;9(10):8678-89 [PMID: 23467041]
  15. Front Mol Neurosci. 2011 Apr 04;4:5 [PMID: 21503147]
  16. Semin Arthritis Rheum. 1989 May;18(4 Suppl 2):57-60 [PMID: 2499049]
  17. Lancet. 2007 Jun 2;369(9576):1869-75 [PMID: 17544767]
  18. Coron Artery Dis. 2000 Sep;11(6):495-502 [PMID: 10966136]
  19. Cardiovasc Revasc Med. 2008 Oct-Dec;9(4):248-54 [PMID: 18928950]
  20. Angew Chem Int Ed Engl. 2002 Sep 2;41(17):3130-46 [PMID: 12207375]
  21. Biomaterials. 2006 Mar;27(7):1013-8 [PMID: 16122786]
  22. Acta Biomater. 2014 Mar;10(3):1475-83 [PMID: 24296127]
  23. J Vasc Interv Radiol. 2009 Mar;20(3):315-24; quiz 325 [PMID: 19157901]
  24. J Biomech. 2005 Jan;38(1):159-67 [PMID: 15519352]
  25. Lab Invest. 2005 Jan;85(1):9-23 [PMID: 15568038]
  26. J Cereb Blood Flow Metab. 2003 May;23(5):536-45 [PMID: 12771568]
  27. JACC Cardiovasc Interv. 2009 Apr;2(4):312-20 [PMID: 19463443]
  28. J Biomed Mater Res B Appl Biomater. 2012 May;100(4):1134-41 [PMID: 22331609]
  29. Acta Biomater. 2013 Nov;9(10):8714-21 [PMID: 23069319]
  30. Acta Biomater. 2013 Feb;9(2):5411-20 [PMID: 23022544]
  31. Acta Biomater. 2012 Mar;8(3):925-36 [PMID: 22134164]
  32. Cardiovasc Intervent Radiol. 2006 Jan-Feb;29(1):11-6 [PMID: 16195840]
  33. EuroIntervention. 2013 Apr 22;8(12 ):1441-50 [PMID: 23680959]
  34. J Mech Behav Biomed Mater. 2011 Apr;4(3):352-65 [PMID: 21316623]
  35. Catheter Cardiovasc Interv. 2007 Apr 1;69(5):735-8 [PMID: 17330269]
  36. Catheter Cardiovasc Interv. 2005 Dec;66(4):590-4 [PMID: 16206223]
  37. Acta Biomater. 2008 Mar;4(2):284-95 [PMID: 18033745]
  38. Biomaterials. 2007 Mar;28(9):1689-710 [PMID: 17188349]
  39. Acta Biomater. 2011 Apr;7(4):1452-9 [PMID: 21145436]
  40. Acta Biomater. 2010 May;6(5):1792-9 [PMID: 19822226]
  41. Acta Biomater. 2011 Jun;7(6):2704-15 [PMID: 21382530]
  42. JACC Cardiovasc Interv. 2014 May;7(5):575-6 [PMID: 24852807]
  43. J Magn Reson Imaging. 1995 Nov-Dec;5(6):640-7 [PMID: 8748480]
  44. Acta Biomater. 2014 Dec;10(12):5213-23 [PMID: 25200844]
  45. Catheter Cardiovasc Interv. 2006 May;67(5):671-3 [PMID: 16575923]
  46. Acta Biomater. 2013 Nov;9(10):8761-70 [PMID: 23535231]
  47. Int J Mol Sci. 2011;12(7):4250-70 [PMID: 21845076]
  48. Acta Biomater. 2013 Jul;9(7):7580-9 [PMID: 23518475]
  49. Nat Mater. 2013 Jun;12(6):576-83 [PMID: 23603848]
  50. Mater Sci Eng C Mater Biol Appl. 2013 Dec 1;33(8):5064-70 [PMID: 24094225]
  51. Acta Biomater. 2013 Nov;9(10):8722-9 [PMID: 23470548]
  52. Acta Biomater. 2013 Nov;9(11):9211-9 [PMID: 23871945]
  53. Nat Rev Cardiol. 2013 Mar;10(3):120 [PMID: 23380977]
  54. Acta Biomater. 2011 Sep;7(9):3523-33 [PMID: 21664498]

Word Cloud

Created with Highcharts 10.0.0testvitroabsorbablevivoimplantsAbsorbableresultsmaterialsassessmentsmetallicparametersmethodsaccuratemagnesium-basedstentmetalswidelytestedvarioussettingsusingcellsevaluatepossiblesuitabilityimplantmaterialHoweverexistsgaplottraditionalpermanentlongerapplicablekeystepidentifyrelevantmicroenvironmentsystemsadaptedaccordingspecificapplicationNewnecessaryreducedifferenceprovideinformationbetterunderstandinvestigativereviewstrivesummarizelatestcharacterizingbioabsorption/biodegradationbehaviormimickingvascularenvironmentsAlsoarticlecomprehensivelydiscussesdirectionstandardizationstentspaintpictureconditionarounddetermineimportantdynamicinteractionsstent:physiologicalfactorsconsiderdegradationbiodegradationmagnesium

Similar Articles

Cited By