Drawing ellipses in water: evidence for dynamic constraints in the relation between velocity and path curvature.

Giovanna Catavitello, Yuri P Ivanenko, Francesco Lacquaniti, Paolo Viviani
Author Information
  1. Giovanna Catavitello: Laboratory of Neuromotor Physiology, Santa Lucia Foundation, via Ardeatina, 306-00179, Rome, Italy.
  2. Yuri P Ivanenko: Laboratory of Neuromotor Physiology, Santa Lucia Foundation, via Ardeatina, 306-00179, Rome, Italy. y.ivanenko@hsantalucia.it.
  3. Francesco Lacquaniti: Laboratory of Neuromotor Physiology, Santa Lucia Foundation, via Ardeatina, 306-00179, Rome, Italy.
  4. Paolo Viviani: Laboratory of Neuromotor Physiology, Santa Lucia Foundation, via Ardeatina, 306-00179, Rome, Italy.

Abstract

Several types of continuous human movements comply with the so-called Two-Thirds Power Law (2/3-PL) stating that velocity (V) is a power function of the radius of curvature (R) of the endpoint trajectory. The origin of the 2/3-PL has been the object of much debate. An experiment investigated further this issue by comparing two-dimensional drawing movements performed in air and water. In both conditions, participants traced continuously quasi-elliptic trajectories (period T = 1.5 s). Other experimental factors were the movement plane (horizontal/vertical), and whether the movement was performed free-hand, or by following the edge of a template. In all cases a power function provided a good approximation to the V-R relation. The main result was that the exponent of the power function in water was significantly smaller than in air. This appears incompatible with the idea that the power relationship depends only on kinematic constraints and suggests a significant contribution of dynamic factors. We argue that a satisfactory explanation of the observed behavior must take into account the interplay between the properties of the central motor commands and the visco-elastic nature of the mechanical plant that implements the commands.

Keywords

References

  1. J Neurosci. 1985 Jul;5(7):1688-703 [PMID: 4020415]
  2. J Neurophysiol. 1998 Aug;80(2):696-714 [PMID: 9705462]
  3. Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):E3950-8 [PMID: 26150514]
  4. J Neurosci. 2002 Sep 15;22(18):8201-11 [PMID: 12223574]
  5. Exp Brain Res. 2001 Jan;136(1):60-72 [PMID: 11204414]
  6. Neuroscience. 1986 Dec;19(4):1393-405 [PMID: 3822127]
  7. J Exp Psychol Hum Percept Perform. 1992 Aug;18(3):603-23 [PMID: 1500865]
  8. J Exp Psychol Hum Percept Perform. 1988 Nov;14(4):622-37 [PMID: 2974873]
  9. Eur J Neurosci. 2007 Oct;26(8):2391-403 [PMID: 17953626]
  10. Exp Brain Res. 2005 Apr;162(2):145-54 [PMID: 15586276]
  11. Science. 1992 Jun 19;256(5064):1692-5 [PMID: 1609282]
  12. J Exp Psychol Hum Percept Perform. 1985 Dec;11(6):828-45 [PMID: 2934511]
  13. Biol Cybern. 2007 Jun;96(6):577-601 [PMID: 17406889]
  14. Neurosci Lett. 2001 Jun 1;305(1):65-9 [PMID: 11356309]
  15. J Exp Psychol Hum Percept Perform. 1991 Feb;17(1):198-218 [PMID: 1826312]
  16. J Neurophysiol. 1996 Nov;76(5):2853-60 [PMID: 8930238]
  17. Neuroscience. 1982 Feb;7(2):431-7 [PMID: 7078732]
  18. Vision Res. 1997 Feb;37(3):347-53 [PMID: 9135867]
  19. PLoS Comput Biol. 2009 Jul;5(7):e1000426 [PMID: 19593380]
  20. Neuroscience. 1983 Sep;10(1):211-8 [PMID: 6646421]
  21. Nature. 1998 Aug 20;394(6695):780-4 [PMID: 9723616]
  22. Exp Brain Res. 2009 Apr;194(2):259-83 [PMID: 19153724]
  23. Biol Cybern. 1983;46(2):135-47 [PMID: 6838914]
  24. J Neurophysiol. 2009 Feb;101(2):1002-15 [PMID: 19073811]
  25. J Neurosci. 1997 May 15;17(10):3932-45 [PMID: 9133411]
  26. J Exp Psychol Hum Percept Perform. 1995 Feb;21(1):32-53 [PMID: 7707032]
  27. J Mot Behav. 1987 Dec;19(4):518-25 [PMID: 15136275]
  28. Biol Cybern. 2007 Feb;96(2):147-63 [PMID: 17031664]
  29. Biol Cybern. 1989;61(2):89-101 [PMID: 2742921]
  30. Science. 1994 Jul 22;265(5171):540-2 [PMID: 8036499]
  31. Acta Psychol (Amst). 1983 Oct;54(1-3):115-30 [PMID: 6666647]
  32. J Speech Lang Hear Res. 2002 Feb;45(1):127-42 [PMID: 14748644]
  33. Cortex. 2009 Mar;45(3):325-39 [PMID: 18678364]
  34. J Neurophysiol. 2008 Sep;100(3):1171-83 [PMID: 18562557]
  35. Neuroreport. 1997 Nov 10;8(16):3447-52 [PMID: 9427305]
  36. Exp Brain Res. 2013 Jun;227(4):535-46 [PMID: 23649968]
  37. Neuroreport. 2002 Jul 2;13(9):1171-4 [PMID: 12151763]

MeSH Term

Adult
Biomechanical Phenomena
Female
Humans
Male
Movement
Viscosity
Water

Chemicals

Water

Word Cloud

Created with Highcharts 10.0.0powermovementsfunctionconstraints2/3-PLvelocitycurvaturetrajectoryperformedairwaterfactorsmovementrelationdynamiccommandsDrawingSeveraltypescontinuoushumancomplyso-calledTwo-ThirdsPowerLawstatingVradiusRendpointoriginobjectmuchdebateexperimentinvestigatedissuecomparingtwo-dimensionaldrawingconditionsparticipantstracedcontinuouslyquasi-elliptictrajectoriesperiodT = 15 sexperimentalplanehorizontal/verticalwhetherfree-handfollowingedgetemplatecasesprovidedgoodapproximationV-Rmainresultexponentsignificantlysmallerappearsincompatibleidearelationshipdependskinematicsuggestssignificantcontributionarguesatisfactoryexplanationobservedbehaviormusttakeaccountinterplaypropertiescentralmotorvisco-elasticnaturemechanicalplantimplementsellipseswater:evidencepathEndpointKinematicTwo-thirdslawVisco-elasticforces

Similar Articles

Cited By