Measure transcript integrity using RNA-seq data.

Liguo Wang, Jinfu Nie, Hugues Sicotte, Ying Li, Jeanette E Eckel-Passow, Surendra Dasari, Peter T Vedell, Poulami Barman, Liewei Wang, Richard Weinshiboum, Jin Jen, Haojie Huang, Manish Kohli, Jean-Pierre A Kocher
Author Information
  1. Liguo Wang: Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, 55905, USA. wang.liguo@mayo.edu.
  2. Jinfu Nie: Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, 55905, USA. nie.jinfujeff@mayo.edu.
  3. Hugues Sicotte: Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, 55905, USA. Sicotte.Hugues@mayo.edu.
  4. Ying Li: Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, 55905, USA. Li.Ying@mayo.edu.
  5. Jeanette E Eckel-Passow: Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, 55905, USA. eckelpassow.jeanette@mayo.edu.
  6. Surendra Dasari: Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, 55905, USA. Dasari.Surendra@mayo.edu.
  7. Peter T Vedell: Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, 55905, USA. Vedell.Peter@mayo.edu.
  8. Poulami Barman: Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, 55905, USA. Barman.Poulami@mayo.edu.
  9. Liewei Wang: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA. Wang.Liewei@mayo.edu.
  10. Richard Weinshiboum: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA. Weinshilboum.Richard@mayo.edu.
  11. Jin Jen: Department of laboratory medicine and pathology, Mayo Clinic, Rochester, MN, 55905, USA. Jen.Jin@mayo.edu.
  12. Haojie Huang: Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA. Huang.Haojie@mayo.edu.
  13. Manish Kohli: Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA. kohli.manish@mayo.edu.
  14. Jean-Pierre A Kocher: Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, 55905, USA. kocher.jeanpierre@mayo.edu.

Abstract

BACKGROUND: Stored biological samples with pathology information and medical records are invaluable resources for translational medical research. However, RNAs extracted from the archived clinical tissues are often substantially degraded. RNA degradation distorts the RNA-seq read coverage in a gene-specific manner, and has profound influences on whole-genome gene expression profiling.
RESULT: We developed the transcript integrity number (TIN) to measure RNA degradation. When applied to 3 independent RNA-seq datasets, we demonstrated TIN is a reliable and sensitive measure of the RNA degradation at both transcript and sample level. Through comparing 10 prostate cancer clinical samples with lower RNA integrity to 10 samples with higher RNA quality, we demonstrated that calibrating gene expression counts with TIN scores could effectively neutralize RNA degradation effects by reducing false positives and recovering biologically meaningful pathways. When further evaluating the performance of TIN correction using spike-in transcripts in RNA-seq data generated from the Sequencing Quality Control consortium, we found TIN adjustment had better control of false positives and false negatives (sensitivity = 0.89, specificity = 0.91, accuracy = 0.90), as compared to gene expression analysis results without TIN correction (sensitivity = 0.98, specificity = 0.50, accuracy = 0.86).
CONCLUSION: TIN is a reliable measurement of RNA integrity and a valuable approach used to neutralize in vitro RNA degradation effect and improve differential gene expression analysis.

References

  1. Cancer Res. 2005 Sep 1;65(17):7917-25 [PMID: 16140963]
  2. J Cell Biochem. 2004 Jan 1;91(1):47-53 [PMID: 14689581]
  3. Prostate Cancer Prostatic Dis. 2006;9(3):230-4 [PMID: 16683009]
  4. Anal Biochem. 2006 Oct 1;357(1):58-67 [PMID: 16860776]
  5. Nat Rev Mol Cell Biol. 2007 Feb;8(2):113-26 [PMID: 17245413]
  6. Nucleic Acids Res. 1999 Nov 15;27(22):4436-43 [PMID: 10536153]
  7. Cell. 1999 Nov 12;99(4):347-50 [PMID: 10571176]
  8. Cancer Metastasis Rev. 2001;20(3-4):195-206 [PMID: 12085962]
  9. Genome Res. 2003 Aug;13(8):1863-72 [PMID: 12902380]
  10. Forensic Sci Int. 2003 Dec 17;138(1-3):94-103 [PMID: 14642725]
  11. Genome Res. 2015 Sep;25(9):1372-81 [PMID: 26253700]
  12. Nature. 1983 Apr 28;302(5911):842-4 [PMID: 6843652]
  13. Cell. 1995 Apr 21;81(2):179-83 [PMID: 7736570]
  14. PLoS One. 2007;2(12):e1261 [PMID: 18060057]
  15. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  16. Cell. 2009 Feb 20;136(4):763-76 [PMID: 19239894]
  17. Diagn Mol Pathol. 2009 Mar;18(1):44-52 [PMID: 19214109]
  18. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  19. Genome Biol. 2010;11(3):R25 [PMID: 20196867]
  20. BMC Med Genomics. 2010;3:36 [PMID: 20696062]
  21. Bioinformatics. 2012 Aug 15;28(16):2184-5 [PMID: 22743226]
  22. Nucleic Acids Res. 2012 Oct;40(18):e144 [PMID: 22735698]
  23. Nat Rev Cancer. 2013 Feb;13(2):111-22 [PMID: 23303138]
  24. Sci Rep. 2013;3:1318 [PMID: 23422947]
  25. Nat Methods. 2013 Jul;10(7):623-9 [PMID: 23685885]
  26. PLoS One. 2014;9(3):e91851 [PMID: 24632678]
  27. BMC Biol. 2014;12:42 [PMID: 24885439]
  28. Nat Biotechnol. 2014 Sep;32(9):903-14 [PMID: 25150838]
  29. Cancer Sci. 2014 Oct;105(10):1351-9 [PMID: 25098609]
  30. Nat Commun. 2015;6:7816 [PMID: 26234653]
  31. BMC Mol Biol. 2006;7:3 [PMID: 16448564]

Grants

  1. CA134514/NCI NIH HHS
  2. P30 CA015083/NCI NIH HHS
  3. CA130908/NCI NIH HHS
  4. R01 CA130908/NCI NIH HHS
  5. R01 CA134514/NCI NIH HHS

MeSH Term

Genome, Human
High-Throughput Nucleotide Sequencing
Humans
Male
Prostatic Neoplasms
Quality Control
RNA Stability
RNA, Messenger
RNA, Neoplasm
Sequence Analysis, RNA

Chemicals

RNA, Messenger
RNA, Neoplasm

Word Cloud

Created with Highcharts 10.0.0RNATIN=0degradationRNA-seqgeneexpressionintegritysamplestranscriptfalsemedicalclinicalmeasuredemonstratedreliable10neutralizepositivescorrectionusingdatasensitivityspecificityaccuracyanalysisBACKGROUND:StoredbiologicalpathologyinformationrecordsinvaluableresourcestranslationalresearchHoweverRNAsextractedarchivedtissuesoftensubstantiallydegradeddistortsreadcoveragegene-specificmannerprofoundinfluenceswhole-genomeprofilingRESULT:developednumberapplied3independentdatasetssensitivesamplelevelcomparingprostatecancerlowerhigherqualitycalibratingcountsscoreseffectivelyeffectsreducingrecoveringbiologicallymeaningfulpathwaysevaluatingperformancespike-intranscriptsgeneratedSequencingQualityControlconsortiumfoundadjustmentbettercontrolnegatives899190comparedresultswithout985086CONCLUSION:measurementvaluableapproachusedvitroeffectimprovedifferentialMeasure

Similar Articles

Cited By