Postprandial thermogenesis and respiratory quotient in response to galactose: comparison with glucose and fructose in healthy young adults.

Nathalie Charrière, Jean-Pierre Montani, Abdul G Dulloo
Author Information
  1. Nathalie Charrière: Department of Medicine , Division of Physiology , University of Fribourg , CH 1700 Fribourg , Switzerland.
  2. Jean-Pierre Montani: Department of Medicine , Division of Physiology , University of Fribourg , CH 1700 Fribourg , Switzerland.
  3. Abdul G Dulloo: Department of Medicine , Division of Physiology , University of Fribourg , CH 1700 Fribourg , Switzerland.

Abstract

Circumstantial evidence suggests that substitution of glucose or sucrose by the low-glycaemic index sugar galactose in the diet may lead to greater thermogenesis and/or fat oxidation. Using ventilated hood indirect calorimetry, we investigated, in twelve overnight-fasted adults, the resting energy expenditure (REE) and respiratory quotient (RQ) for 30 min before and 150 min after ingestion of 500 ml of water containing 60 g of glucose, fructose or galactose in a randomised cross-over design. REE increased similarly with all three sugars, reaching peak values after 50-60 min, but its subsequent fall towards baseline values was faster with galactose and glucose than with fructose (P < 0·001). RQ increased with all three sugars, but to a much greater extent with galactose and fructose than with glucose, particularly after 1 h post-ingestion. When ingested as a sugary drink, postprandial thermogenesis and utilisation of fat after galactose are not higher than after glucose or fructose.

Keywords

References

  1. Obes Rev. 2006 May;7(2):219-26 [PMID: 16629877]
  2. J Am Coll Nutr. 2016;35(1):1-12 [PMID: 25932956]
  3. Nutr Metab (Lond). 2013 Aug 13;10(1):54 [PMID: 23941499]
  4. Obesity (Silver Spring). 2007 Nov;15(11):2605-13 [PMID: 18070751]
  5. Am J Physiol. 1986 Jun;250(6 Pt 1):E718-24 [PMID: 3521319]
  6. J Appl Physiol Respir Environ Exerc Physiol. 1983 Aug;55(2):628-34 [PMID: 6618956]
  7. Diabetes Care. 2014 Apr;37(4):950-6 [PMID: 24652725]
  8. J Biol Chem. 1974 Mar 25;249(6):1657-60 [PMID: 4856362]
  9. Horm Metab Res. 2005 Feb;37(2):111-7 [PMID: 15778929]
  10. Am J Clin Nutr. 1983 Jul;38(1):84-94 [PMID: 6344611]
  11. Am J Clin Nutr. 2011 Feb;93(2):374-81 [PMID: 21123462]
  12. Am J Clin Nutr. 1993 Nov;58(5 Suppl):754S-765S [PMID: 8213607]
  13. Obesity (Silver Spring). 2015 Jan;23(1):16-9 [PMID: 25294090]
  14. Clin Sci. 1964 Dec;27:371-9 [PMID: 14236773]
  15. J Clin Endocrinol Metab. 1979 Oct;49(4):616-22 [PMID: 479351]
  16. Diabetes. 2004 May;53(5):1271-8 [PMID: 15111496]
  17. Nutrition. 2010 Nov-Dec;26(11-12):1044-9 [PMID: 20471804]
  18. J Physiol. 1949 Aug;109(1-2):1-9 [PMID: 15394301]
  19. Am J Clin Nutr. 2004 Apr;79(4):537-43 [PMID: 15051594]
  20. Ann Nutr Metab. 1984;28(4):226-30 [PMID: 6476787]

Word Cloud

Created with Highcharts 10.0.0glucosegalactosefructosequotientthermogenesisexpenditureREErespiratoryRQgreaterfatadultsrestingenergyincreasedthreesugarsvaluesCircumstantialevidencesuggestssubstitutionsucroselow-glycaemicindexsugardietmayleadand/oroxidationUsingventilatedhoodindirectcalorimetryinvestigatedtwelveovernight-fasted30 min150 miningestion500 mlwatercontaining60 grandomisedcross-overdesignsimilarlyreachingpeak50-60 minsubsequentfalltowardsbaselinefasterP < 0·001muchextentparticularly1hpost-ingestioningestedsugarydrinkpostprandialutilisationhigherPostprandialresponsegalactose:comparisonhealthyyoungEnergyFructoseGalactoseRespiratorySugarsThermogenesis

Similar Articles

Cited By