Experimental realization of the Yang-Baxter Equation via NMR interferometry.

F Anvari Vind, A Foerster, I S Oliveira, R S Sarthour, D O Soares-Pinto, A M Souza, I Roditi
Author Information
  1. F Anvari Vind: Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ, Brazil.
  2. A Foerster: Instituto de Física da UFRGS, Av. Bento Gonçalves, 9500, Agronomia, Porto Alegre, RS, Brazil.
  3. I S Oliveira: Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ, Brazil.
  4. R S Sarthour: Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ, Brazil.
  5. D O Soares-Pinto: Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil.
  6. A M Souza: Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ, Brazil.
  7. I Roditi: Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ, Brazil.

Abstract

The Yang-Baxter equation is an important tool in theoretical physics, with many applications in different domains that span from condensed matter to string theory. Recently, the interest on the equation has increased due to its connection to quantum information processing. It has been shown that the Yang-Baxter equation is closely related to quantum entanglement and quantum computation. Therefore, owing to the broad relevance of this equation, besides theoretical studies, it also became significant to pursue its experimental implementation. Here, we show an experimental realization of the Yang-Baxter equation and verify its validity through a Nuclear Magnetic Resonance (NMR) interferometric setup. Our experiment was performed on a liquid state Iodotrifluoroethylene sample which contains molecules with three qubits. We use Controlled-transfer gates that allow us to build a pseudo-pure state from which we are able to apply a quantum information protocol that implements the Yang-Baxter equation.

References

  1. Phys Rev Lett. 2002 May 27;88(21):217901 [PMID: 12059503]
  2. Phys Rev Lett. 2015 Jan 30;114(4):043604 [PMID: 25679893]
  3. Nature. 2006 Apr 13;440(7086):900-3 [PMID: 16612376]
  4. Phys Rev Lett. 2003 Dec 19;91(25):250402 [PMID: 14754099]
  5. Nat Commun. 2011 Jan 25;2:169 [PMID: 21266968]
  6. Nature. 2010 Sep 30;467(7315):567-9 [PMID: 20882011]
  7. Phys Rev Lett. 2005 Jun 3;94(21):210401 [PMID: 16090304]
  8. Philos Trans A Math Phys Eng Sci. 2012 Oct 13;370(1976):4615-9 [PMID: 22946031]
  9. Nature. 2001 Dec 20-27;414(6866):883-7 [PMID: 11780055]
  10. Nat Commun. 2012 Jun 06;3:880 [PMID: 22673907]
  11. J Magn Reson. 2005 Feb;172(2):296-305 [PMID: 15649756]
  12. Phys Rev Lett. 2009 Dec 18;103(25):250501 [PMID: 20366244]
  13. Phys Rev Lett. 2006 May 5;96(17):170501 [PMID: 16712281]
  14. Philos Trans A Math Phys Eng Sci. 2013 Mar 18;371(1989):20120053 [PMID: 23509381]
  15. Phys Rev Lett. 2014 Jul 4;113(1):010502 [PMID: 25032913]
  16. Phys Rev Lett. 2001 Feb 26;86(9):1889-91 [PMID: 11290274]
  17. Sci Rep. 2013;3:2232 [PMID: 23958996]
  18. Philos Trans A Math Phys Eng Sci. 2012 Oct 13;370(1976):4690-712 [PMID: 22946036]
  19. Phys Rev A. 2010 Mar 1;81(3): [PMID: 21461143]
  20. Nature. 2000 Mar 23;404(6776):368-70 [PMID: 10746718]

Word Cloud

Created with Highcharts 10.0.0equationYang-BaxterquantumtheoreticalinformationexperimentalrealizationNMRstateimportanttoolphysicsmanyapplicationsdifferentdomainsspancondensedmatterstringtheoryRecentlyinterestincreaseddueconnectionprocessingshowncloselyrelatedentanglementcomputationThereforeowingbroadrelevancebesidesstudiesalsobecamesignificantpursueimplementationshowverifyvalidityNuclearMagneticResonanceinterferometricsetupexperimentperformedliquidIodotrifluoroethylenesamplecontainsmoleculesthreequbitsuseControlled-transfergatesallowusbuildpseudo-pureableapplyprotocolimplementsExperimentalEquationviainterferometry

Similar Articles

Cited By (1)