Learning (from) the errors of a systems biology model.

Benjamin Engelhardt, Holger Frőhlich, Maik Kschischo
Author Information
  1. Benjamin Engelhardt: Rheinische Friedrich-Wilhelms-Universität Bonn, Institute for Computer Science, Algorithmic Bioinformatics, c/o Bonn-Aachen International Center for IT, Dahlmannstr. 2, 53113, Bonn, Germany.
  2. Holger Frőhlich: Rheinische Friedrich-Wilhelms-Universität Bonn, Institute for Computer Science, Algorithmic Bioinformatics, c/o Bonn-Aachen International Center for IT, Dahlmannstr. 2, 53113, Bonn, Germany.
  3. Maik Kschischo: University of Applied Sciences Koblenz, RheinAhrCampus, Department of Mathematics and Technology, Joseph-Rovan-Allee 2, 53424 Remagen, Germany.

Abstract

Mathematical modelling is a labour intensive process involving several iterations of testing on real data and manual model modifications. In biology, the domain knowledge guiding model development is in many cases itself incomplete and uncertain. A major problem in this context is that biological systems are open. Missed or unknown external influences as well as erroneous interactions in the model could thus lead to severely misleading results. Here we introduce the dynamic elastic-net, a data driven mathematical method which automatically detects such model errors in ordinary differential equation (ODE) models. We demonstrate for real and simulated data, how the dynamic elastic-net approach can be used to automatically (i) reconstruct the error signal, (ii) identify the target variables of model error, and (iii) reconstruct the true system state even for incomplete or preliminary models. Our work provides a systematic computational method facilitating modelling of open biological systems under uncertain knowledge.

References

  1. Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1028-33 [PMID: 12552139]
  2. Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18507-12 [PMID: 25512544]
  3. Bioinformatics. 2009 Aug 1;25(15):1923-9 [PMID: 19505944]
  4. BMC Syst Biol. 2010;4:11 [PMID: 20163703]
  5. BMC Syst Biol. 2010;4:92 [PMID: 20587024]
  6. Chaos. 2010 Dec;20(4):045105 [PMID: 21198117]
  7. Nat Methods. 2011 Feb;8(2):130-1 [PMID: 21278724]
  8. PLoS Comput Biol. 2012;8(6):e1002548 [PMID: 22737060]
  9. Bioinformatics. 2012 Sep 15;28(18):i529-i534 [PMID: 22962477]
  10. Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2460-5 [PMID: 23359701]
  11. Sci Signal. 2013 May 28;6(277):ra41 [PMID: 23716718]
  12. BMC Syst Biol. 2013;7:76 [PMID: 23938131]
  13. PLoS Comput Biol. 2013;9(9):e1003204 [PMID: 24039561]
  14. BMC Syst Biol. 2014;8:1 [PMID: 24393148]
  15. Bioinformatics. 2014 Jan 15;30(2):221-7 [PMID: 24297519]
  16. BMC Biol. 2014;12:29 [PMID: 24886484]
  17. Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11539-44 [PMID: 25049395]
  18. Mol Genet Genomics. 2014 Oct;289(5):727-34 [PMID: 24728588]
  19. Science. 1950 Jan 13;111(2872):23-9 [PMID: 15398815]

MeSH Term

Computer Simulation
Humans
Learning
Models, Biological
Systems Biology
Uncertainty

Word Cloud

Created with Highcharts 10.0.0modeldatasystemsmodellingrealbiologyknowledgeincompleteuncertainbiologicalopendynamicelastic-netmethodautomaticallyerrorsmodelsreconstructerrorMathematicallabourintensiveprocessinvolvingseveraliterationstestingmanualmodificationsdomainguidingdevelopmentmanycasesmajorproblemcontextMissedunknownexternalinfluenceswellerroneousinteractionsthusleadseverelymisleadingresultsintroducedrivenmathematicaldetectsordinarydifferentialequationODEdemonstratesimulatedapproachcanusedsignaliiidentifytargetvariablesiiitruesystemstateevenpreliminaryworkprovidessystematiccomputationalfacilitatingLearning

Similar Articles

Cited By