Somatic incompatibility and genetic structure of fungal crops in sympatric and leaf-cutting ants.

Pepijn W Kooij, Michael Poulsen, Morten Schiøtt, Jacobus J Boomsma
Author Information
  1. Pepijn W Kooij: Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
  2. Michael Poulsen: Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
  3. Morten Schiøtt: Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
  4. Jacobus J Boomsma: Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.

Abstract

Obligate mutualistic symbioses rely on mechanisms that secure host-symbiont commitments to maximize host benefits and prevent symbiont cheating. Previous studies showed that somatic incompatibilities correlate with neutral-marker-based genetic distances between fungal symbionts of Panamanian leaf-cutting ants, but the extent to which this relationship applies more generally remained unclear. Here we showed that genetic distances accurately predicted somatic incompatibility for symbionts irrespective of whether neutral microsatellites or AFLP markers were used, but that such correlations were weaker or absent in sympatric colonies. Further analysis showed that the symbiont clades maintained by and were likely to represent separate gene pools, so that neutral markers were unlikely to be similarly correlated with incompatibility loci that have experienced different selection regimes. We suggest that evolutionarily derived claustral colony founding by queens may have removed selection for strong incompatibility in fungi, as this condition makes the likelihood of symbiont swaps much lower than in , where incipient nests stay open because queens have to forage until the first workers emerge.

Keywords

References

  1. Science. 2005 Feb 4;307(5710):741-4 [PMID: 15692054]
  2. Genetics. 2003 Aug;164(4):1567-87 [PMID: 12930761]
  3. Biol Bull. 2012 Aug;223(1):112-22 [PMID: 22983037]
  4. Evolution. 2009 Sep;63(9):2235-47 [PMID: 19473381]
  5. Am Nat. 2002 Oct;160 Suppl 4:S67-98 [PMID: 18707454]
  6. Bioinformatics. 2007 Jul 15;23(14):1801-6 [PMID: 17485429]
  7. Genetics. 2000 Jun;155(2):945-59 [PMID: 10835412]
  8. J Evol Biol. 2010 Dec;23(12):2507-28 [PMID: 20942825]
  9. Nucleic Acids Res. 1995 Nov 11;23(21):4407-14 [PMID: 7501463]
  10. Proc Biol Sci. 1996 Mar 22;263(1368):339-44 [PMID: 8920255]
  11. Nat Rev Microbiol. 2011 Nov 08;10(1):13-26 [PMID: 22064560]
  12. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8676-80 [PMID: 9671737]
  13. New Phytol. 2008;177(4):849-58 [PMID: 18275492]
  14. Nat Rev Microbiol. 2007 Aug;5(8):611-8 [PMID: 17632572]
  15. Proc Biol Sci. 2011 Oct 22;278(1721):3050-9 [PMID: 21389026]
  16. Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10702-6 [PMID: 16815974]
  17. Mycologia. 2009 Mar-Apr;101(2):206-10 [PMID: 19397193]
  18. J Evol Biol. 2015 Nov;28(11):1911-24 [PMID: 26265100]
  19. J Evol Biol. 2006 Jul;19(4):1283-93 [PMID: 16780529]
  20. Evolution. 2009 Aug;63(8):2172-8 [PMID: 19453731]
  21. PLoS Genet. 2010 Sep 23;6(9):e1001129 [PMID: 20885794]
  22. Nature. 2006 Mar 30;440(7084):623-30 [PMID: 16572163]
  23. Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5435-40 [PMID: 18362345]
  24. Mol Ecol. 2002 Feb;11(2):191-5 [PMID: 11856421]
  25. Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15247-9 [PMID: 12438688]
  26. Mol Ecol. 2007 Jan;16(1):209-16 [PMID: 17181732]
  27. Fungal Genet Biol. 2009 Sep;46(9):632-41 [PMID: 19523529]
  28. J Theor Biol. 1994 Oct 21;170(4):393-400 [PMID: 7996864]
  29. Nat Commun. 2012 May 15;3:840 [PMID: 22588302]
  30. Mol Ecol. 2013 Aug;22(16):4307-21 [PMID: 23899369]
  31. Q Rev Biol. 2004 Jun;79(2):135-60 [PMID: 15232949]
  32. Trends Ecol Evol. 2011 Apr;26(4):202-9 [PMID: 21371775]
  33. Evolution. 2001 Oct;55(10):1980-91 [PMID: 11761059]
  34. Nat Rev Microbiol. 2008 Oct;6(10):741-51 [PMID: 18794912]
  35. Mol Ecol Resour. 2009 Sep;9(5):1391-4 [PMID: 21564916]
  36. Mol Phylogenet Evol. 2002 Jan;22(1):76-90 [PMID: 11796031]
  37. BMC Evol Biol. 2014 Dec 04;14:244 [PMID: 25471204]
  38. J Chem Ecol. 2007 Dec;33(12):2281-92 [PMID: 18040743]
  39. Am Nat. 2010 Jun;175(6):E126-33 [PMID: 20415533]
  40. Mol Plant Pathol. 2009 Jan;10(1):115-28 [PMID: 19161358]
  41. PeerJ. 2014 Mar 04;2:e281 [PMID: 24688859]
  42. Proc Biol Sci. 2011 Jun 22;278(1713):1814-22 [PMID: 21106596]
  43. Fungal Genet Biol. 2011 Nov;48(11):1034-43 [PMID: 21889597]
  44. Evolution. 2011 Jun;65(6):1791-9 [PMID: 21644963]
  45. PLoS One. 2010 Sep 10;5(9):null [PMID: 20844760]
  46. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4053-6 [PMID: 21368106]

Grants

  1. 323085/European Research Council

Word Cloud

Created with Highcharts 10.0.0incompatibilitysymbiontshowedgeneticantssomaticdistancesfungalsymbiontsleaf-cuttingneutralmarkerssympatricselectionqueensObligatemutualisticsymbiosesrelymechanismssecurehost-symbiontcommitmentsmaximizehostbenefitspreventcheatingPreviousstudiesincompatibilitiescorrelateneutral-marker-basedPanamanianextentrelationshipappliesgenerallyremainedunclearaccuratelypredictedirrespectivewhethermicrosatellitesAFLPusedcorrelationsweakerabsentcoloniesanalysiscladesmaintainedlikelyrepresentseparategenepoolsunlikelysimilarlycorrelatedlociexperienceddifferentregimessuggestevolutionarilyderivedclaustralcolonyfoundingmayremovedstrongfungiconditionmakeslikelihoodswapsmuchlowerincipientnestsstayopenforagefirstworkersemergeSomaticstructurecropsAttiniBasidiomycotaCommitmentFungus-growingInteractionLeucoagaricusgongylophorusMutualismSymbiosis

Similar Articles

Cited By