Kin Discrimination in Protists: From Many Cells to Single Cells and Backwards.

Guillermo Paz-Y-Miño-C, Avelina Espinosa
Author Information
  1. Guillermo Paz-Y-Miño-C: New England Center for the Public Understanding of Science, Roger Williams University, One Old Ferry Road, Bristol, Rhode Island, 02809.
  2. Avelina Espinosa: New England Center for the Public Understanding of Science, Roger Williams University, One Old Ferry Road, Bristol, Rhode Island, 02809.

Abstract

During four decades (1960-1990s), the conceptualization and experimental design of studies in kin recognition relied on work with multicellular eukaryotes, particularly Unikonta (including invertebrates and vertebrates) and some Bikonta (including plants). This pioneering research had an animal behavior approach. During the 2000s, work on taxa-, clone- and kin-discrimination and recognition in protists produced genetic and molecular evidence that unicellular organisms (e.g. Saccharomyces, Dictyostelium, Polysphondylium, Tetrahymena, Entamoeba and Plasmodium) could distinguish between same (self or clone) and different (diverse clones), as well as among conspecifics of close or distant genetic relatedness. Here, we discuss some of the research on the genetics of kin discrimination/recognition and highlight the scientific progress made by switching emphasis from investigating multicellular to unicellular systems (and backwards). We document how studies with protists are helping us to understand the microscopic, cellular origins and evolution of the mechanisms of kin discrimination/recognition and their significance for the advent of multicellularity. We emphasize that because protists are among the most ancient organisms on Earth, belong to multiple taxonomic groups and occupy all environments, they can be central to reexamining traditional hypotheses in the field of kin recognition, reformulating concepts, and generating new knowledge.

Keywords

References

  1. Biol Lett. 2013 Feb 23;9(1):20120636 [PMID: 23015456]
  2. Nature. 2006 Aug 24;442(7105):881-2 [PMID: 16929288]
  3. Int J Parasitol. 2010 Jun;40(7):775-8 [PMID: 20359482]
  4. Nature. 2008 May 29;453(7195):605-6 [PMID: 18509433]
  5. Dev Growth Differ. 2011 May;53(4):597-607 [PMID: 21585362]
  6. Cell. 2008 Nov 14;135(4):726-37 [PMID: 19013280]
  7. Biol Rev Camb Philos Soc. 2013 Nov;88(4):844-61 [PMID: 23448295]
  8. PLoS Genet. 2013 Nov;9(11):e1003891 [PMID: 24244178]
  9. Psychol Rep. 2006 Jun;98(3):705-11 [PMID: 16933666]
  10. Br Foreign Med Chir Rev. 1860 Apr;25(50):367-404 [PMID: 30164232]
  11. Nat Rev Microbiol. 2006 Aug;4(8):597-607 [PMID: 16845430]
  12. Science. 2003 Jan 3;299(5603):105-6 [PMID: 12511650]
  13. PLoS Biol. 2008 Nov 25;6(11):e287 [PMID: 19067487]
  14. Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1595-600 [PMID: 22307617]
  15. J Comp Physiol Psychol. 1958 Feb;51(1):110-5 [PMID: 13513859]
  16. Trends Genet. 2011 Feb;27(2):48-54 [PMID: 21167620]
  17. J Eukaryot Microbiol. 2013 Jul-Aug;60(4):407-13 [PMID: 23672341]
  18. Curr Biol. 2009 Apr 14;19(7):567-72 [PMID: 19285397]
  19. Nat Commun. 2015 May 28;6:7144 [PMID: 26018043]
  20. Trends Microbiol. 2012 Apr;20(4):184-91 [PMID: 22342867]
  21. J Eukaryot Microbiol. 2016 May;63(3):384-93 [PMID: 26990199]
  22. Curr Opin Microbiol. 2015 Apr;24:21-8 [PMID: 25597443]
  23. Proc Biol Sci. 2012 Sep 7;279(1742):3584-8 [PMID: 22648154]
  24. Proc Biol Sci. 2012 Jul 7;279(1738):2619-24 [PMID: 22357265]
  25. Int J Syst Evol Microbiol. 2006 Sep;56(Pt 9):2235-2239 [PMID: 16957127]
  26. Evol Ecol. 2014 Nov 1;28(6):1019-1029 [PMID: 25400313]
  27. Bioessays. 2013 Apr;35(4):339-47 [PMID: 23315654]
  28. Science. 1957 Feb 1;125(3240):191-2 [PMID: 13390982]
  29. Protist. 2013 Jan;164(1):2-12 [PMID: 23083534]
  30. Trends Parasitol. 2015 Oct;31(10):490-498 [PMID: 26433252]
  31. Science. 2011 Jul 22;333(6041):467-70 [PMID: 21700835]
  32. J Eukaryot Microbiol. 2012 Mar-Apr;59(2):105-10 [PMID: 22299709]
  33. Trends Cell Biol. 2013 Jan;23(1):9-15 [PMID: 22999189]
  34. Trends Parasitol. 2011 May;27(5):197-203 [PMID: 21345732]
  35. Proc Biol Sci. 2012 Nov 22;279(1747):4677-85 [PMID: 23015626]
  36. Proc Biol Sci. 2013 Apr 17;280(1760):20122947 [PMID: 23595266]
  37. J Eukaryot Microbiol. 1997 Mar-Apr;44(2):142-54 [PMID: 9109261]
  38. Behav Processes. 2001 Mar 13;53(1-2):21-40 [PMID: 11254989]
  39. Protist. 2012 May;163(3):327-43 [PMID: 22209334]
  40. Evolution. 2010 Jan;64(1):25-38 [PMID: 19780812]
  41. Dev Comp Immunol. 2012 May;37(1):1-8 [PMID: 21945832]
  42. Evolution. 2011 Jan;65(1):3-20 [PMID: 20722725]
  43. Annu Rev Genet. 2013;47:247-73 [PMID: 24016192]
  44. Science. 1967 Apr 28;156(3774):477-88 [PMID: 6021675]
  45. J Evol Biol. 2013 Sep;26(9):1854-65 [PMID: 23848844]
  46. PLoS Pathog. 2010 Jan 29;6(1):e1000739 [PMID: 20126443]
  47. Genome Res. 2011 Nov;21(11):1882-91 [PMID: 21757610]
  48. Behav Brain Funct. 2011 Nov 18;7:47 [PMID: 22098673]
  49. Evolution. 2014 Feb;68(2):318-31 [PMID: 24131102]
  50. BMC Evol Biol. 2011 Jan 27;11:31 [PMID: 21272359]
  51. BMC Biol. 2013 Apr 15;11:40 [PMID: 23587248]
  52. Science. 1958 Jun 27;127(3313):1498-9 [PMID: 13555911]
  53. J Helminthol. 2005 Sep;79(3):187-91 [PMID: 16153311]
  54. J Theor Biol. 1964 Jul;7(1):1-16 [PMID: 5875341]
  55. Biol Lett. 2013 Oct 16;9(6):20130454 [PMID: 24132095]
  56. J Evol Biol. 2015 Apr;28(4):756-65 [PMID: 25772340]
  57. Nature. 2008 May 29;453(7195):609-14 [PMID: 18509435]
  58. J Exp Bot. 2010 Oct;61(15):4123-8 [PMID: 20696656]
  59. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10112-9 [PMID: 25964342]
  60. Proc Natl Acad Sci U S A. 2011 Jun 28;108 Suppl 2:10823-30 [PMID: 21690390]
  61. Proc Biol Sci. 2012 Jul 7;279(1738):2589-98 [PMID: 22398165]
  62. Evolution. 2010 May;64(5):1290-300 [PMID: 19930455]

Grants

  1. P20 GM103430/NIGMS NIH HHS

MeSH Term

Alleles
Animals
Biological Evolution
Eukaryota
Genetic Fitness
Phenotype

Word Cloud

Created with Highcharts 10.0.0kinrecognitionprotistsstudiesworkmulticellularincludingresearchgeneticunicellularorganismsamongdiscrimination/recognitionCellsfourdecades1960-1990sconceptualizationexperimentaldesignreliedeukaryotesparticularlyUnikontainvertebratesvertebratesBikontaplantspioneeringanimalbehaviorapproach2000staxa-clone-kin-discriminationproducedmolecularevidenceegSaccharomycesDictyosteliumPolysphondyliumTetrahymenaEntamoebaPlasmodiumdistinguishselfclonedifferentdiversecloneswellconspecificsclosedistantrelatednessdiscussgeneticshighlightscientificprogressmadeswitchingemphasisinvestigatingsystemsbackwardsdocumenthelpingusunderstandmicroscopiccellularoriginsevolutionmechanismssignificanceadventmulticellularityemphasizeancientEarthbelongmultipletaxonomicgroupsoccupyenvironmentscancentralreexaminingtraditionalhypothesesin thefieldreformulatingconceptsgeneratingnewknowledgeKinDiscriminationProtists:ManySingleBackwardsAntirecognitionstrategiescheatersresisterscommunicationproblemgreen-beardeffecthonestsignalsinclusivefitnessselectionphenotypematchingalleles

Similar Articles

Cited By