Efficacy of Schwann cell transplantation for spinal cord repair is improved with combinatorial strategies.

Mary Bartlett Bunge
Author Information
  1. Mary Bartlett Bunge: The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA.

Abstract

When cells (including Schwann cells; SCs) of the peripheral nervous system (PNS) could be purified and expanded in number in tissue culture, Richard Bunge in 1975 envisioned that the SCs could be introduced to repair the central nervous system (CNS), as SCs enable axons to regenerate after PNS injury. Importantly, autologous human SCs could be transplanted into injured human spinal cord. Availability of the new culture systems to study interactions between sensory neurons, SCs and fibroblasts increased our knowledge of SC biology in the 1970s and '80s. Joining the Miami Project to Cure Paralysis in 1989 brought the opportunity to use this knowledge to initiate spinal cord repair studies. Development of a rat complete spinal cord transection/SC bridge model allowed the demonstration that axons regenerate into the SC bridge. Together with study of contused rat spinal cord, it was concluded that implanted SCs reduce cavitation, protect tissue around the lesion, support axon regeneration and form myelin. SC transplantation efficacy was improved when combined with neurotrophins, elevation of cyclic AMP levels, olfactory ensheathing cells, a steroid or chondroitinase. Increased efficacy meant higher numbers of axons, particularly from the brainstem, and more SC-myelinated axons in the implants and improvement in hindlimb movements. Human SCs support axon regeneration as do rat SCs. Astrocytes at the SC bridge-host spinal cord interfaces play a key role in determining whether axons enter the SC milieu. The SC work described here contributed to gaining approval from the FDA for an initial autologous human SC clinical trial (at the Miami Project) that has been completed and found to be safe.

References

  1. Nature. 1975 Aug 21;256(5519):662-4 [PMID: 1171378]
  2. J Neurosci. 2002 Aug 1;22(15):6670-81 [PMID: 12151546]
  3. J Neurotrauma. 2003 Jan;20(1):1-16 [PMID: 12614584]
  4. Neuroscience. 2003;118(1):271-81 [PMID: 12676157]
  5. Nat Med. 2004 Jun;10(6):610-6 [PMID: 15156204]
  6. J Neurotrauma. 2004 Sep;21(9):1223-39 [PMID: 15453992]
  7. J Neurosci. 2005 Feb 2;25(5):1169-78 [PMID: 15689553]
  8. Glia. 2007 Jul;55(9):976-1000 [PMID: 17526000]
  9. Exp Neurol. 2007 Oct;207(2):203-17 [PMID: 17719577]
  10. Neurosci Lett. 2009 Jun 12;456(3):124-32 [PMID: 19429147]
  11. J Neurotrauma. 2011 Aug;28(8):1611-82 [PMID: 20146557]
  12. Handb Clin Neurol. 2012;109:523-40 [PMID: 23098734]
  13. Cell Transplant. 2013;22(12):2203-17 [PMID: 23146351]
  14. Ann N Y Acad Sci. 1990;580:281-7 [PMID: 2337301]
  15. Exp Neurol. 2013 Oct;248:170-82 [PMID: 23792206]
  16. Cell Transplant. 2015;24(1):115-31 [PMID: 24152553]
  17. Curr Opin Organ Transplant. 2013 Dec;18(6):682-9 [PMID: 24220051]
  18. J Neurosci. 2014 Jan 29;34(5):1838-55 [PMID: 24478364]
  19. Science. 1989 Jan 13;243(4888):229-31 [PMID: 2492115]
  20. Dev Biol. 1989 Jun;133(2):393-404 [PMID: 2659405]
  21. J Neurol Sci. 1989 Jun;91(1-2):15-34 [PMID: 2746287]
  22. J Neurosci. 1989 Feb;9(2):625-38 [PMID: 2918381]
  23. J Cell Biol. 1987 Aug;105(2):1023-34 [PMID: 3624305]
  24. J Cell Biol. 1980 Jan;84(1):184-202 [PMID: 7188611]
  25. Nature. 1980 Mar 20;284(5753):264-5 [PMID: 7360259]
  26. Exp Neurol. 1995 Aug;134(2):261-72 [PMID: 7556546]
  27. J Neurol. 1994 Dec;242(1 Suppl 1):S19-21 [PMID: 7699403]
  28. J Chem Neuroanat. 1993 Jul-Aug;6(4):191-9 [PMID: 8397920]
  29. Exp Neurol. 1996 Apr;138(2):261-76 [PMID: 8620925]
  30. J Neurocytol. 1997 Jan;26(1):1-16 [PMID: 9154524]
  31. Exp Neurol. 1997 Dec;148(2):502-22 [PMID: 9417829]
  32. Eur J Neurosci. 1998 Feb;10(2):607-21 [PMID: 9749723]

MeSH Term

Animals
Combined Modality Therapy
Humans
Schwann Cells
Spinal Cord Injuries
Spinal Cord Regeneration

Word Cloud

Created with Highcharts 10.0.0SCsSCspinalcordaxonscellsrepairhumanratSchwannnervoussystemPNStissuecultureregenerateautologousstudyknowledgeMiamiProjectbridgesupportaxonregenerationtransplantationefficacyimprovedincludingperipheralpurifiedexpandednumberRichardBunge1975envisionedintroducedcentralCNSenableinjuryImportantlytransplantedinjuredAvailabilitynewsystemsinteractionssensoryneuronsfibroblastsincreasedbiology1970s'80sJoiningCureParalysis1989broughtopportunityuseinitiatestudiesDevelopmentcompletetransection/SCmodelalloweddemonstrationTogethercontusedconcludedimplantedreducecavitationprotectaroundlesionformmyelincombinedneurotrophinselevationcyclicAMPlevelsolfactoryensheathingsteroidchondroitinaseIncreasedmeanthighernumbersparticularlybrainstemSC-myelinatedimplantsimprovementhindlimbmovementsHumanAstrocytesbridge-hostinterfacesplaykeyroledeterminingwhetherentermilieuworkdescribedcontributedgainingapprovalFDAinitialclinicaltrialcompletedfoundsafeEfficacycellcombinatorialstrategies

Similar Articles

Cited By