Proteome Based Construction of the Lymphocyte Function-Associated Antigen 1 (LFA-1) Interactome in Human Dendritic Cells.

Christina Eich, Edwin Lasonder, Luis J Cruz, Inge Reinieren-Beeren, Alessandra Cambi, Carl G Figdor, Sonja I Buschow
Author Information
  1. Christina Eich: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.
  2. Edwin Lasonder: CMBI, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
  3. Luis J Cruz: Nanomedicine and Molecular Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
  4. Inge Reinieren-Beeren: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.
  5. Alessandra Cambi: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.
  6. Carl G Figdor: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.
  7. Sonja I Buschow: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.

Abstract

The β2-integrin lymphocyte function-associated antigen 1 (LFA-1) plays an important role in the migration, adhesion and intercellular communication of dendritic cells (DCs). During the differentiation of human DCs from monocyte precursors, LFA-1 ligand binding capacity is completely lost, even though its expression levels were remained constant. Yet LFA-1-mediated adhesive capacity on DCs can be regained by exposing DCs to the chemokine CCL21, suggesting a high degree of regulation of LFA-1 activity during the course of DC differentiation. The molecular mechanisms underlying this regulation of LFA-1 function in DCs, however, remain elusive. To get more insight we attempted to identify specific LFA-1 binding partners that may play a role in regulating LFA-1 activity in DCs. We used highly sensitive label free quantitative mass-spectrometry to identify proteins co-immunoprecipitated (co-IP) with LFA-1 from ex vivo generated DCs. Among the potential binding partners we identified not only established components of integrin signalling pathways and cytoskeletal proteins, but also several novel LFA-1 binding partners including CD13, galectin-3, thrombospondin-1 and CD44. Further comparison to the LFA-1 interaction partners in monocytes indicated that DC differentiation was accompanied by an overall increase in LFA-1 associated proteins, in particular cytoskeletal, signalling and plasma membrane (PM) proteins. The here presented LFA-1 interactome composed of 78 proteins thus represents a valuable resource of potential regulators of LFA-1 function during the DC lifecycle.

References

  1. J Microsc. 2006 Dec;224(Pt 3):213-32 [PMID: 17210054]
  2. Science. 2009 May 15;324(5929):895-9 [PMID: 19443776]
  3. Nat Cell Biol. 2011 Apr;13(4):383-93 [PMID: 21423176]
  4. J Cell Sci. 2009 Oct 15;122(Pt 20):3684-93 [PMID: 19755493]
  5. J Exp Med. 1995 Jan 1;181(1):315-26 [PMID: 7807011]
  6. Mol Biol Cell. 2006 Oct;17(10):4270-81 [PMID: 16855029]
  7. Cell. 2014 Mar 13;156(6):1340-1340.e1 [PMID: 24630731]
  8. J Biol Chem. 1998 Dec 11;273(50):33588-94 [PMID: 9837942]
  9. Immunity. 2007 Jan;26(1):17-27 [PMID: 17241958]
  10. Nature. 2008 May 1;453(7191):51-5 [PMID: 18451854]
  11. J Biol Chem. 2008 Sep 5;283(36):24659-72 [PMID: 18566454]
  12. J Biol Chem. 2004 Apr 2;279(14):14207-12 [PMID: 14742433]
  13. Wiley Interdiscip Rev Syst Biol Med. 2009 Jul-Aug;1(1):116-27 [PMID: 20835985]
  14. Eur J Cell Biol. 2012 Nov-Dec;91(11-12):908-22 [PMID: 22721921]
  15. Curr Opin Cell Biol. 2005 Oct;17(5):509-16 [PMID: 16099636]
  16. Nat Chem Biol. 2008 Sep;4(9):538-47 [PMID: 18641634]
  17. PLoS One. 2014;9(6):e99589 [PMID: 24945611]
  18. Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4869-74 [PMID: 22411821]
  19. Eur J Immunol. 1985 Nov;15(11):1142-8 [PMID: 2933266]
  20. Eur J Cell Biol. 2011 Feb-Mar;90(2-3):115-27 [PMID: 20609496]
  21. Blood. 2008 Apr 1;111(7):3607-14 [PMID: 18239087]
  22. J Cell Biol. 2009 Aug 10;186(3):317-21 [PMID: 19667126]
  23. Nat Rev Immunol. 2011 Jun;11(6):416-26 [PMID: 21597477]
  24. Immunity. 2008 Jan;28(1):88-99 [PMID: 18191593]
  25. Sci Signal. 2009;2(87):ra51 [PMID: 19738201]
  26. Nature. 1989 Oct 19;341(6243):619-24 [PMID: 2477710]
  27. FASEB J. 2005 Aug;19(10):1305-7 [PMID: 15955842]
  28. Biofactors. 2010 Jul-Aug;36(4):248-54 [PMID: 20818710]
  29. Nature. 2011 May 19;473(7347):337-42 [PMID: 21593866]
  30. J Leukoc Biol. 2008 Aug;84(2):448-59 [PMID: 18495788]
  31. Nat Cell Biol. 2014 Jun;16(6):595-606 [PMID: 24837829]
  32. Br J Pharmacol. 2005 Dec;146(8):1139-47 [PMID: 16247412]
  33. J Cell Biol. 2008 Jul 28;182(2):341-53 [PMID: 18663144]
  34. Immunity. 2007 Jun;26(6):773-83 [PMID: 17543554]
  35. Small GTPases. 2013 Oct-Dec;4(4):199-207 [PMID: 24355937]
  36. J Proteome Res. 2011 Apr 1;10(4):1794-805 [PMID: 21254760]
  37. Immunol Cell Biol. 2011 Mar;89(3):458-65 [PMID: 20805842]
  38. Nat Biotechnol. 2008 Dec;26(12):1367-72 [PMID: 19029910]
  39. J Biol Chem. 1999 Jun 25;274(26):18463-9 [PMID: 10373454]
  40. Mol Cell Biol. 2002 Feb;22(4):1001-15 [PMID: 11809793]
  41. Anal Chem. 2003 Feb 1;75(3):663-70 [PMID: 12585499]
  42. Proteome Sci. 2014 May 01;12:23 [PMID: 24987309]
  43. Blood. 2007 Nov 15;110(10):3773-9 [PMID: 17699741]
  44. J Cell Biol. 2009 Nov 30;187(5):733-47 [PMID: 19951918]
  45. J Proteome Res. 2010 Apr 5;9(4):1727-37 [PMID: 20131907]
  46. Ann N Y Acad Sci. 2008;1131:119-33 [PMID: 18519965]
  47. Curr Biol. 2006 Sep 19;16(18):1796-806 [PMID: 16979556]
  48. J Cell Biol. 2009 May 4;185(3):381-5 [PMID: 19398762]
  49. Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15 [PMID: 23203871]
  50. J Biol Chem. 1999 Dec 24;274(52):36921-7 [PMID: 10601245]
  51. Immunology. 2012 Apr;135(4):268-75 [PMID: 22211918]
  52. Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18557-62 [PMID: 19850864]
  53. Science. 1995 Feb 10;267(5199):883-5 [PMID: 7846531]
  54. Annu Rev Biophys Biomol Struct. 2002;31:485-516 [PMID: 11988479]
  55. Curr Opin Cell Biol. 2012 Oct;24(5):562-8 [PMID: 22728062]

MeSH Term

Blotting, Western
CD13 Antigens
Cell Membrane
Computer Simulation
Dendritic Cells
Galectin 3
Humans
Hyaluronan Receptors
Immunoprecipitation
Integrins
Ligands
Lymphocyte Function-Associated Antigen-1
Mass Spectrometry
Monocytes
Protein Binding
Protein Interaction Maps
Proteome
Reproducibility of Results

Chemicals

Galectin 3
Hyaluronan Receptors
Integrins
Ligands
Lymphocyte Function-Associated Antigen-1
Proteome
CD13 Antigens

Word Cloud

Created with Highcharts 10.0.0LFA-1DCsproteinsbindingpartnersdifferentiationDC1rolecapacityregulationactivityfunctionidentifypotentialsignallingcytoskeletalβ2-integrinlymphocytefunction-associatedantigenplaysimportantmigrationadhesionintercellularcommunicationdendriticcellshumanmonocyteprecursorsligandcompletelylosteventhoughexpressionlevelsremainedconstantYetLFA-1-mediatedadhesivecanregainedexposingchemokineCCL21suggestinghighdegreecoursemolecularmechanismsunderlyinghoweverremainelusivegetinsightattemptedspecificmayplayregulatingusedhighlysensitivelabelfreequantitativemass-spectrometryco-immunoprecipitatedco-IPexvivogeneratedAmongidentifiedestablishedcomponentsintegrinpathwaysalsoseveralnovelincludingCD13galectin-3thrombospondin-1CD44comparisoninteractionmonocytesindicatedaccompaniedoverallincreaseassociatedparticularplasmamembranePMpresentedinteractomecomposed78thusrepresentsvaluableresourceregulatorslifecycleProteomeBasedConstructionLymphocyteFunction-AssociatedAntigenInteractomeHumanDendriticCells

Similar Articles

Cited By