Predicting the Quality of Pasteurized Vegetables Using Kinetic Models: A Review.

Muhammad Aamir, Mahmoudreza Ovissipour, Shyam S Sablani, Barbara Rasco
Author Information
  1. Muhammad Aamir: School of Food Science, Washington State University, Pullman, WA 99164-6376, USA.
  2. Mahmoudreza Ovissipour: School of Food Science, Washington State University, Pullman, WA 99164-6376, USA.
  3. Shyam S Sablani: Department of Biological System Engineering, Washington State University, Pullman, WA 99164-6120, USA.
  4. Barbara Rasco: School of Food Science, Washington State University, Pullman, WA 99164-6376, USA.

Abstract

A resurgence in interest examining thermal pasteurization technologies has been driven by demands for "cleaner" labeling and the need of organic and natural foods markets for suitable preventive measures to impede microbial growth and extend shelf life of minimally processed foods and ready-to-eat foods with a concomitant reduction in the use of chemical preservatives. This review describes the effects of thermal pasteurization on vegetable quality attributes including altering flavor and texture to improve consumer acceptability, stabilizing color, improving digestibility, palatability and retaining bioavailability of important nutrients, and bioactive compounds. Here, we provide kinetic parameters for inactivation of viral and bacterial pathogens and their surrogates and marker enzymes used to monitor process effectiveness in a variety of plant food items. Data on thermal processing protocols leading to higher retention and bioactivity are also presented. Thermal inactivation of foodborne viruses and pathogenic bacteria, specifically at lower pasteurization temperatures or via new technologies such as dielectric heating, can lead to greater retention of "fresh-like" properties.

References

  1. Appl Microbiol. 1972 Feb;23(2):415-20 [PMID: 4552893]
  2. Crit Rev Food Sci Nutr. 2010 May;50(5):369-89 [PMID: 20373184]
  3. J Agric Food Chem. 1999 Nov;47(11):4506-11 [PMID: 10552842]
  4. J Appl Microbiol. 2009 Jul;107(1):65-71 [PMID: 19298511]
  5. Crit Rev Food Sci Nutr. 2007;47(8):749-63 [PMID: 17987448]
  6. Biotechnol Bioeng. 1992 Jul;40(3):396-402 [PMID: 18601130]
  7. J Appl Microbiol. 2000 Apr;88(4):626-32 [PMID: 10792520]
  8. Plant Foods Hum Nutr. 1997;50(3):239-47 [PMID: 9373874]
  9. J Agric Food Chem. 1999 Jun;47(6):2404-9 [PMID: 10794643]
  10. J Food Prot. 2006 Nov;69(11):2761-5 [PMID: 17133824]
  11. Nutr Cancer. 1995;24(3):257-66 [PMID: 8610045]
  12. J Food Prot. 1997 Aug;60(8):967-972 [PMID: 31207798]
  13. J Food Prot. 2007 Mar;70(3):674-80 [PMID: 17388058]
  14. Plant Foods Hum Nutr. 1997;50(3):189-201 [PMID: 9373870]
  15. J Agric Food Chem. 1999 Nov;47(11):4625-30 [PMID: 10552861]
  16. J Food Prot. 2004 Jul;67(7):1403-7 [PMID: 15270493]
  17. Proc Soc Exp Biol Med. 1998 Jun;218(2):101-5 [PMID: 9605205]
  18. Int J Food Microbiol. 1997 Apr 15;35(3):231-7 [PMID: 9105932]
  19. Appl Microbiol. 1961 Sep;9:415-8 [PMID: 13740067]
  20. J Nutr. 1995 Jul;125(7):1854-9 [PMID: 7616301]
  21. J Food Sci. 2007 Mar;72(2):S103-11 [PMID: 17995850]
  22. Appl Environ Microbiol. 2010 Mar;76(6):2013-7 [PMID: 20080994]
  23. Poult Sci. 2003 Aug;82(8):1337-42 [PMID: 12943307]
  24. J Biol Chem. 1998 Nov 13;273(46):30651-9 [PMID: 9804838]
  25. Mol Nutr Food Res. 2007 Jun;51(6):702-13 [PMID: 17533653]
  26. Crit Rev Food Sci Nutr. 1994;34(3):229-51 [PMID: 8068199]
  27. Crit Rev Biotechnol. 2000;20(4):293-334 [PMID: 11192026]
  28. J Photochem Photobiol B. 1991 Oct;11(1):41-7 [PMID: 1791493]
  29. J Am Diet Assoc. 1993 Mar;93(3):284-96 [PMID: 8440826]
  30. Crit Rev Food Sci Nutr. 1991;30(5):487-553 [PMID: 1958293]
  31. J Food Prot. 1995 Sep;58(9):960-966 [PMID: 31137409]
  32. Plant Foods Hum Nutr. 1987;37(4):291-8 [PMID: 3507002]
  33. J Food Prot. 2004 Feb;67(2):383-6 [PMID: 14968974]
  34. Protoplasma. 1974;82(1):33-59 [PMID: 4410079]
  35. Phytopathology. 1997 Aug;87(8):814-21 [PMID: 18945049]
  36. J Food Sci. 2007 Mar;72(2):M56-61 [PMID: 17995843]
  37. Appl Environ Microbiol. 2008 Feb;74(4):1030-8 [PMID: 18156330]
  38. J Appl Microbiol. 1998 Feb;84(2):234-9 [PMID: 9633638]
  39. J Food Sci. 2007 Mar;72(2):E102-7 [PMID: 17995832]
  40. J Food Prot. 2004 Jul;67(7):1394-402 [PMID: 15270492]

Word Cloud

Created with Highcharts 10.0.0thermalpasteurizationfoodstechnologiesinactivationretentionresurgenceinterestexaminingdrivendemands"cleaner"labelingneedorganicnaturalmarketssuitablepreventivemeasuresimpedemicrobialgrowthextendshelflifeminimallyprocessedready-to-eatconcomitantreductionusechemicalpreservativesreviewdescribeseffectsvegetablequalityattributesincludingalteringflavortextureimproveconsumeracceptabilitystabilizingcolorimprovingdigestibilitypalatabilityretainingbioavailabilityimportantnutrientsbioactivecompoundsprovidekineticparametersviralbacterialpathogenssurrogatesmarkerenzymesusedmonitorprocesseffectivenessvarietyplantfooditemsDataprocessingprotocolsleadinghigherbioactivityalsopresentedThermalfoodbornevirusespathogenicbacteriaspecificallylowertemperaturesvianewdielectricheatingcanleadgreater"fresh-like"propertiesPredictingQualityPasteurizedVegetablesUsingKineticModels:Review

Similar Articles

Cited By (5)