Automated Cell Selection Using Support Vector Machine for Application to Spectral Nanocytology.

Qin Miao, Justin Derbas, Aya Eid, Hariharan Subramanian, Vadim Backman
Author Information
  1. Qin Miao: Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA.
  2. Justin Derbas: NanoCytomics LLC, 1801 Maple Avenue, Evanston, IL 60201, USA.
  3. Aya Eid: Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA.
  4. Hariharan Subramanian: Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA; NanoCytomics LLC, 1801 Maple Avenue, Evanston, IL 60201, USA.
  5. Vadim Backman: Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA.

Abstract

Partial wave spectroscopy (PWS) enables quantification of the statistical properties of cell structures at the nanoscale, which has been used to identify patients harboring premalignant tumors by interrogating easily accessible sites distant from location of the lesion. Due to its high sensitivity, cells that are well preserved need to be selected from the smear images for further analysis. To date, such cell selection has been done manually. This is time-consuming, is labor-intensive, is vulnerable to bias, and has considerable inter- and intraoperator variability. In this study, we developed a classification scheme to identify and remove the corrupted cells or debris that are of no diagnostic value from raw smear images. The slide of smear sample is digitized by acquiring and stitching low-magnification transmission. Objects are then extracted from these images through segmentation algorithms. A training-set is created by manually classifying objects as suitable or unsuitable. A feature-set is created by quantifying a large number of features for each object. The training-set and feature-set are used to train a selection algorithm using Support Vector Machine (SVM) classifiers. We show that the selection algorithm achieves an error rate of 93% with a sensitivity of 95%.

References

  1. Circulation. 2007 Feb 6;115(5):654-7 [PMID: 17283280]
  2. Acta Cytol. 1997 Jan-Feb;41(1):30-8 [PMID: 9022723]
  3. Chest. 2007 Sep;132(3 Suppl):29S-55S [PMID: 17873159]
  4. Chest. 2007 Sep;132(3 Suppl):69S-77S [PMID: 17873161]
  5. Artif Intell Med. 2008 Jan;42(1):1-11 [PMID: 17996432]
  6. Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20118-23 [PMID: 19073935]
  7. Cancer Prev Res (Phila). 2008 Jun;1(1):12-4 [PMID: 19138931]
  8. Cancer Prev Res (Phila). 2008 Nov;1(6):396-403 [PMID: 19138985]
  9. Comput Biol Med. 2009 Jan;39(1):69-78 [PMID: 19147127]
  10. Opt Lett. 2009 Feb 15;34(4):518-20 [PMID: 19373360]
  11. Cancer Res. 2009 Jul 1;69(13):5357-63 [PMID: 19549915]
  12. Cancer Res. 2010 Oct 15;70(20):7748-54 [PMID: 20924114]
  13. Cancer Res. 2012 Jun 1;72(11):2720-7 [PMID: 22491589]
  14. Comput Methods Programs Biomed. 2012 Sep;107(3):497-512 [PMID: 22306072]
  15. Int J Cancer. 2013 Sep 1;133(5):1143-52 [PMID: 23436651]
  16. J Biomed Opt. 2013 Nov;18(11):117002 [PMID: 24193949]
  17. PLoS One. 2015;10(2):e0115999 [PMID: 25706755]
  18. IEEE/ACM Trans Comput Biol Bioinform. 2014 Jan-Feb;11(1):192-201 [PMID: 26355518]
  19. Obstet Gynecol. 1997 Aug;90(2):278-84 [PMID: 9241308]
  20. Sci Am. 2000 Oct;283(4):82-7 [PMID: 11011389]
  21. Bioinformatics. 2000 Oct;16(10):906-14 [PMID: 11120680]
  22. Br J Cancer. 2001 Feb 2;84(3):360-6 [PMID: 11161401]
  23. J Histochem Cytochem. 1979 Jan;27(1):621-8 [PMID: 374630]
  24. Cancer Lett. 1994 Mar 15;77(2-3):155-62 [PMID: 8168062]
  25. PLoS Comput Biol. 2007 Jun;3(6):e116 [PMID: 17604446]

Grants

  1. R01 CA165309/NCI NIH HHS
  2. R01 CA155284/NCI NIH HHS
  3. P30 CA060553/NCI NIH HHS
  4. 5R01 CA165309/NCI NIH HHS
  5. 5R01 EB016983/NIBIB NIH HHS
  6. 5R01 CA155284/NCI NIH HHS
  7. R01 EB016983/NIBIB NIH HHS

MeSH Term

Cell Tracking
Cytological Techniques
Humans
Nanotechnology
Support Vector Machine

Word Cloud

Created with Highcharts 10.0.0smearimagesselectioncellusedidentifysensitivitycellsmanuallytraining-setcreatedfeature-setalgorithmSupportVectorMachinePartialwavespectroscopyPWSenablesquantificationstatisticalpropertiesstructuresnanoscalepatientsharboringpremalignanttumorsinterrogatingeasilyaccessiblesitesdistantlocationlesionDuehighwellpreservedneedselectedanalysisdatedonetime-consuminglabor-intensivevulnerablebiasconsiderableinter-intraoperatorvariabilitystudydevelopedclassificationschemeremovecorrupteddebrisdiagnosticvaluerawslidesampledigitizedacquiringstitchinglow-magnificationtransmissionObjectsextractedsegmentationalgorithmsclassifyingobjectssuitableunsuitablequantifyinglargenumberfeaturesobjecttrainusingSVMclassifiersshowachieveserrorrate93%95%AutomatedCellSelectionUsingApplicationSpectralNanocytology

Similar Articles

Cited By