The interactive effects of microcystin-LR and cylindrospermopsin on the growth rate of the freshwater algae Chlorella vulgaris.

Carlos Pinheiro, Joana Azevedo, Alexandre Campos, Vítor Vasconcelos, Susana Loureiro
Author Information
  1. Carlos Pinheiro: Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal. carlos.pinheiro@ua.pt. ORCID
  2. Joana Azevedo: Centro Interdisciplinar de Investigação Marinha e Ambiental, CIIMAR/CIMAR, Rua dos Bragas 289, 4050-123, Porto, Portugal.
  3. Alexandre Campos: Centro Interdisciplinar de Investigação Marinha e Ambiental, CIIMAR/CIMAR, Rua dos Bragas 289, 4050-123, Porto, Portugal.
  4. Vítor Vasconcelos: Centro Interdisciplinar de Investigação Marinha e Ambiental, CIIMAR/CIMAR, Rua dos Bragas 289, 4050-123, Porto, Portugal.
  5. Susana Loureiro: Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.

Abstract

Microcystin-LR (MC-LR) and cylindrospermopsin (CYN) are the most representative cyanobacterial cyanotoxins. They have been simultaneously detected in aquatic systems, but their combined ecotoxicological effects to aquatic organisms, especially microalgae, is unknown. In this study, we examined the effects of these cyanotoxins individually and as a binary mixture on the growth rate of the freshwater algae Chlorella vulgaris. Using the MIXTOX tool, the reference model concentration addition (CA) was selected to evaluate the combined effects of MC-LR and CYN on the growth of the freshwater green algae due to its conservative prediction of mixture effect for putative similar or dissimilar acting chemicals. Deviations from the CA model such as synergism/antagonism, dose-ratio and dose-level dependency were also assessed. In single exposures, our results demonstrated that MC-LR and CYN had different impacts on the growth rates of C. vulgaris at the highest tested concentrations, being CYN the most toxic. In the mixture exposure trial, MC-LR and CYN showed a synergistic deviation from the conceptual model CA as the best descriptive model. MC-LR individually was not toxic even at high concentrations (37 mg L(-1)); however, the presence of MC-LR at much lower concentrations (0.4-16.7 mg L(-1)) increased the CYN toxicity. From these results, the combined exposure of MC-LR and CYN should be considered for risk assessment of mixtures as the toxicity may be underestimated when looking only at the single cyanotoxins and not their combination. This study also represents an important step to understand the interactions among MC-LR and CYN detected previously in aquatic systems.

Keywords

References

  1. Environ Microbiol. 2000 Jun;2(3):291-7 [PMID: 11200430]
  2. Ecotoxicology. 2008 Jan;17 (1):29-35 [PMID: 17940868]
  3. Toxicon. 2010 May;55(5):965-72 [PMID: 19878689]
  4. Environ Int. 2010 Feb;36(2):226-35 [PMID: 19962762]
  5. Environ Toxicol. 2010 Feb;25(1):18-27 [PMID: 19161233]
  6. Toxicon. 2009 Apr;53(5):519-24 [PMID: 19673098]
  7. FEBS Lett. 1990 May 21;264(2):187-92 [PMID: 2162782]
  8. Environ Toxicol. 2011 Nov;26(6):641-8 [PMID: 20549631]
  9. Chemosphere. 2012 Sep;89(1):30-7 [PMID: 22572165]
  10. Toxicon. 2008 Feb;51(2):191-8 [PMID: 17949769]
  11. Toxicon. 2009 Sep 15;54(4):440-9 [PMID: 19464311]
  12. Biochem Biophys Res Commun. 1995 Nov 2;216(1):162-9 [PMID: 7488083]
  13. Biochem Pharmacol. 1995 Jan 18;49(2):219-25 [PMID: 7840799]
  14. Toxicon. 2006 Dec 15;48(8):995-1001 [PMID: 16982077]
  15. Environ Toxicol Chem. 2010 Aug;29(8):1716-26 [PMID: 20821624]
  16. Mar Drugs. 2013 Sep 30;11(10 ):3689-717 [PMID: 24084787]
  17. New Phytol. 2007;176(4):824-35 [PMID: 17924947]
  18. Environ Toxicol. 2009 Aug;24(4):415-20 [PMID: 18825725]
  19. Environ Toxicol. 2007 Feb;22(1):26-32 [PMID: 17295278]
  20. Microb Ecol. 2006 May;51(4):508-15 [PMID: 16645927]
  21. J Toxicol Environ Health B Crit Rev. 2005 Jan-Feb;8(1):1-37 [PMID: 15762553]
  22. Environ Toxicol. 2006 Apr;21(2):125-30 [PMID: 16528687]
  23. Water Res. 2012 Apr 1;46(5):1349-63 [PMID: 21893330]
  24. Mol Nutr Food Res. 2006 Jan;50(1):7-17 [PMID: 16304634]
  25. Environ Toxicol. 2005 Jun;20(3):373-80 [PMID: 15892038]
  26. Environ Sci Technol. 2006 May 1;40(9):2917-23 [PMID: 16719091]
  27. Environ Sci Technol. 2004 Dec 1;38(23):6363-70 [PMID: 15597893]
  28. Science. 2008 Apr 4;320(5872):57-8 [PMID: 18388279]
  29. Mol Nutr Food Res. 2007 Jan;51(1):7-60 [PMID: 17195276]
  30. Interdiscip Toxicol. 2009 Jun;2(2):36-41 [PMID: 21217843]
  31. J Toxicol Environ Health A. 2005 May 14;68(9):739-53 [PMID: 16020200]
  32. Chemosphere. 2009 Feb;74(5):669-75 [PMID: 19084257]
  33. Ecotoxicol Environ Saf. 2015 Jun;116:59-67 [PMID: 25768423]
  34. Aquat Toxicol. 2008 Aug 11;89(1):28-39 [PMID: 18606466]
  35. Environ Toxicol. 2006 Dec;21(6):552-60 [PMID: 17091499]
  36. Environ Sci Technol. 1994 Jan 1;28(1):173-7 [PMID: 22175848]
  37. Environ Toxicol Chem. 2005 Oct;24(10):2701-13 [PMID: 16268173]
  38. Aquat Toxicol. 2002 Oct 30;60(3-4):223-31 [PMID: 12200087]
  39. Mar Drugs. 2010 Mar 09;8(3):542-64 [PMID: 20411114]
  40. Toxicol Appl Pharmacol. 2005 Mar 15;203(3):201-18 [PMID: 15737675]
  41. Toxicon. 1994 Jul;32(7):833-43 [PMID: 7940590]
  42. Environ Sci Technol. 2010 Apr 15;44(8):3002-7 [PMID: 20345151]
  43. Ecotoxicol Environ Saf. 2011 Oct;74(7):1973-80 [PMID: 21723604]
  44. Rapid Commun Mass Spectrom. 2009 Oct 30;23 (20):3279-84 [PMID: 19757453]
  45. Toxicon. 2002 Apr;40(4):471-6 [PMID: 11738241]
  46. FEMS Microbiol Ecol. 2008 Apr;64(1):55-64 [PMID: 18266743]
  47. J Nat Prod. 2000 Mar;63(3):387-9 [PMID: 10757726]
  48. Biochim Biophys Acta. 1998 Nov 27;1425(3):527-33 [PMID: 9838216]
  49. J Toxicol Environ Health A. 2007 Oct;70(19):1679-86 [PMID: 17763086]
  50. Integr Environ Assess Manag. 2005 Apr;1(2):114-22 [PMID: 16639893]
  51. FEMS Microbiol Lett. 2004 Jun 1;235(1):125-9 [PMID: 15158271]
  52. Ecotoxicology. 2008 Aug;17 (6):504-16 [PMID: 18389369]
  53. Aquat Toxicol. 2011 Aug;104(3-4):230-42 [PMID: 21635866]
  54. Aquat Toxicol. 2004 Dec 10;70(3):169-78 [PMID: 15550274]
  55. Environ Microbiol Rep. 2009 Feb;1(1):27-37 [PMID: 23765717]
  56. Toxicon. 2007 Nov;50(6):800-9 [PMID: 17804031]
  57. Microb Ecol. 2001 Jul;42(1):80-86 [PMID: 12035083]
  58. Environ Toxicol. 2006 Aug;21(4):299-304 [PMID: 16841306]
  59. Environ Toxicol. 2001 Oct;16(5):408-12 [PMID: 11594027]
  60. Bull Environ Contam Toxicol. 2009 Jul;83(1):81-4 [PMID: 19436926]
  61. Electrophoresis. 2004 Jan;25(1):108-15 [PMID: 14730574]
  62. Curr Med Chem. 2002 Nov;9(22):1991-2003 [PMID: 12369867]

MeSH Term

Alkaloids
Bacterial Toxins
Chlorella vulgaris
Cyanobacteria Toxins
Environmental Monitoring
Fresh Water
Marine Toxins
Microcystins
Uracil
Water Pollutants, Chemical

Chemicals

Alkaloids
Bacterial Toxins
Cyanobacteria Toxins
Marine Toxins
Microcystins
Water Pollutants, Chemical
cylindrospermopsin
Uracil
cyanoginosin LR

Word Cloud

Created with Highcharts 10.0.0MC-LRCYNeffectsgrowthvulgarismodelcyanotoxinsaquaticcombinedmixturefreshwateralgaeChlorellaCAconcentrationsMicrocystin-LRcylindrospermopsindetectedsystemsstudyindividuallyrateadditionalsosingleresultstoxicexposure-1toxicityrepresentativecyanobacterialsimultaneouslyecotoxicologicalorganismsespeciallymicroalgaeunknownexaminedbinaryUsingMIXTOXtoolreferenceconcentrationselectedevaluategreendueconservativepredictioneffectputativesimilardissimilaractingchemicalsDeviationssynergism/antagonismdose-ratiodose-leveldependencyassessedexposuresdemonstrateddifferentimpactsratesChighesttestedtrialshowedsynergisticdeviationconceptualbestdescriptiveevenhigh37 mg Lhoweverpresencemuchlower04-167 mg Lincreasedconsideredriskassessmentmixturesmayunderestimatedlookingcombinationrepresentsimportantstepunderstandinteractionsamongpreviouslyinteractivemicrocystin-LRConcentrationCyanotoxinsCylindrospermopsinSynergism

Similar Articles

Cited By (5)