Low internal pressure in femtoliter water capillary bridges reduces evaporation rates.

Kun Cho, In Gyu Hwang, Yeseul Kim, Su Jin Lim, Jun Lim, Joon Heon Kim, Bopil Gim, Byung Mook Weon
Author Information
  1. Kun Cho: Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea.
  2. In Gyu Hwang: Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea.
  3. Yeseul Kim: Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea.
  4. Su Jin Lim: Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea.
  5. Jun Lim: Beamline Division, Pohang Light Source, Hyoja, Pohang, Kyung-buk, 790-784, Korea.
  6. Joon Heon Kim: Advanced Photonics Research Institute, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Korea.
  7. Bopil Gim: Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.
  8. Byung Mook Weon: Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea.

Abstract

Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.

References

  1. Science. 2011 Feb 18;331(6019):897-900 [PMID: 21330542]
  2. J Phys Chem Lett. 2014 Feb 20;5(4):737-42 [PMID: 26270845]
  3. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 1):061604 [PMID: 23005106]
  4. J Phys Chem B. 2007 Nov 15;111(45):13020-7 [PMID: 17958352]
  5. Phys Rev Lett. 2014 Jul 25;113(4):046101 [PMID: 25105634]
  6. Soft Matter. 2015 Feb 28;11(8):1500-16 [PMID: 25582822]
  7. Nat Mater. 2015 Sep;14(9):869-70 [PMID: 26288975]
  8. Phys Rev Lett. 2008 Mar 14;100(10):106103 [PMID: 18352212]
  9. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jul;62(1 Pt B):756-65 [PMID: 11088531]
  10. Phys Rev Lett. 2014 May 2;112(17):175502 [PMID: 24836256]
  11. J Synchrotron Radiat. 2014 Jul;21(Pt 4):827-31 [PMID: 24971982]
  12. Chem Soc Rev. 2010 Mar;39(3):1096-114 [PMID: 20179827]
  13. Angew Chem Int Ed Engl. 2010 May 25;49(23):3880-95 [PMID: 20419719]
  14. Adv Colloid Interface Sci. 2012 Jan 15;170(1-2):67-86 [PMID: 22277832]
  15. Nature. 2005 Sep 29;437(7059):733-6 [PMID: 16193052]
  16. Phys Chem Chem Phys. 2008 Apr 28;10(16):2137-44 [PMID: 18404218]
  17. Soft Matter. 2014 Nov 14;10(42):8489-99 [PMID: 25238574]
  18. Nat Mater. 2012 Jan 24;11(2):99-100 [PMID: 22270822]
  19. Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):803-8 [PMID: 12538868]
  20. Adv Colloid Interface Sci. 2009 Feb 28;146(1-2):48-60 [PMID: 19022419]
  21. Nat Mater. 2008 Mar;7(3):189-93 [PMID: 18264104]
  22. Analyst. 2014 Nov 7;139(21):5538-46 [PMID: 25199661]
  23. Nat Commun. 2013;4:1919 [PMID: 23715278]
  24. Nanoscale. 2015 Jan 21;7(3):919-23 [PMID: 25475682]
  25. J Appl Physiol (1985). 2010 Oct;109(4):1179-94 [PMID: 20634359]
  26. Nanoscale Res Lett. 2011 Jan 12;6(1):72 [PMID: 21711621]
  27. ACS Nano. 2013 Sep 24;7(9):7601-9 [PMID: 23889001]
  28. Nat Mater. 2011 Dec 04;11(2):138-42 [PMID: 22138792]
  29. Langmuir. 2006 Jan 31;22(3):1093-8 [PMID: 16430270]
  30. Phys Rev Lett. 2014 Feb 14;112(6):066102 [PMID: 24580695]
  31. Anal Chem. 2009 Jul 1;81(13):5111-8 [PMID: 19507850]
  32. Nat Mater. 2008 Mar;7(3):174-5 [PMID: 18297123]

Word Cloud

Created with Highcharts 10.0.0bridgesevaporationpressurecapillarywaterratescanlowerinternalsurroundingfemtoliterCapillaryusuallyformedsmallliquidvolumeconfinedspacetwosolidsurfacesvolumesorderfemtolitersFemtoliterrelativelyrapiddifficultexploreexperimentallyunderstanddetailpresentfeasibleexperimentalmethoddirectlyvisualizeevaporatemicrosphereflatsubstratestillairusingtransmissionX-raymicroscopyPrecisemeasurementsshowsignificantlydecreasesuppressionvapordiffusionfindingprovidesinsightultrasmallLowreduces

Similar Articles

Cited By