Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans.

T Brooke McClendon, Meghan R Sullivan, Kara A Bernstein, Judith L Yanowitz
Author Information
  1. T Brooke McClendon: Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 Magee-Womens Research Institute and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213. ORCID
  2. Meghan R Sullivan: Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 University of Pittsburgh Cancer Institute and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213. ORCID
  3. Kara A Bernstein: Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 University of Pittsburgh Cancer Institute and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 jly@alum.mit.edu karab@pitt.edu.
  4. Judith L Yanowitz: Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 Magee-Womens Research Institute and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 jly@alum.mit.edu karab@pitt.edu. ORCID

Abstract

Homologous recombination (HR) repairs cytotoxic DNA double-strand breaks (DSBs) with high fidelity. Deficiencies in HR result in genome instability. A key early step in HR is the search for and invasion of a homologous DNA template by a single-stranded RAD-51 nucleoprotein filament. The Shu complex, composed of a SWIM domain-containing protein and its interacting RAD51 paralogs, promotes HR by regulating RAD51 filament dynamics. Despite Shu complex orthologs throughout eukaryotes, our understanding of its function has been most extensively characterized in budding yeast. Evolutionary analysis of the SWIM domain identified Caenorhabditis elegans sws-1 as a putative homolog of the yeast Shu complex member Shu2. Using a CRISPR-induced nonsense allele of sws-1, we show that sws-1 promotes HR in mitotic and meiotic nuclei. sws-1 mutants exhibit sensitivity to DSB-inducing agents and fail to form mitotic RAD-51 foci following treatment with camptothecin. Phenotypic similarities between sws-1 and the two RAD-51 paralogs rfs-1 and rip-1 suggest that they function together. Indeed, we detect direct interaction between SWS-1 and RIP-1 by yeast two-hybrid assay that is mediated by the SWIM domain in SWS-1 and the Walker B motif in RIP-1 Furthermore, RIP-1 bridges an interaction between SWS-1 and RFS-1, suggesting that RIP-1 facilitates complex formation with SWS-1 and RFS-1 We propose that SWS-1, RIP-1, and RFS-1 compose a C. elegans Shu complex. Our work provides a new model for studying Shu complex disruption in the context of a multicellular organism that has important implications as to why mutations in the human RAD51 paralogs are associated with genome instability.

Keywords

References

  1. EMBO J. 2006 Jun 7;25(11):2564-74 [PMID: 16710300]
  2. Nat Genet. 2010 May;42(5):406-9 [PMID: 20400963]
  3. Nat Commun. 2013;4:1676 [PMID: 23575680]
  4. EMBO J. 2007 Jul 25;26(14):3384-96 [PMID: 17611606]
  5. Cold Spring Harb Perspect Biol. 2015 Aug;7(8):a016501 [PMID: 26238353]
  6. Cold Spring Harb Perspect Biol. 2013 Nov;5(11):a012740 [PMID: 24097900]
  7. Cold Spring Harb Perspect Biol. 2015 Apr;7(4):a016600 [PMID: 25833843]
  8. Cold Spring Harb Protoc. 2014 Apr;2014(4):420-7 [PMID: 24692492]
  9. Mol Microbiol. 2009 Jul;73(1):89-102 [PMID: 19496932]
  10. Methods. 2014 Aug 1;68(3):441-9 [PMID: 24768858]
  11. Genetics. 2014 Nov;198(3):837-46 [PMID: 25161212]
  12. Cancer Res. 2009 Feb 1;69(3):863-72 [PMID: 19155299]
  13. Mol Biol Cell. 2007 Oct;18(10):4062-73 [PMID: 17671161]
  14. Cell. 2015 Jul 16;162(2):271-86 [PMID: 26186187]
  15. Genetics. 2006 Oct;174(2):601-16 [PMID: 16951081]
  16. Methods Cell Biol. 2012;107:321-52 [PMID: 22226529]
  17. Mol Cell. 2015 Aug 6;59(3):478-90 [PMID: 26253028]
  18. Genetics. 1974 May;77(1):71-94 [PMID: 4366476]
  19. Genetics. 2005 Mar;169(3):1275-89 [PMID: 15654096]
  20. Cell. 1997 Feb 7;88(3):375-84 [PMID: 9039264]
  21. Dev Biol. 2007 Aug 1;308(1):206-21 [PMID: 17599823]
  22. Genetics. 2015 Apr;199(4):1023-33 [PMID: 25659377]
  23. Nat Genet. 2002 Aug;31(4):405-9 [PMID: 12101400]
  24. Methods. 2012 Jan;56(1):50-4 [PMID: 22019720]
  25. Genetics. 2007 Aug;176(4):2015-25 [PMID: 17565948]
  26. Nat Protoc. 2008;3(6):1101-8 [PMID: 18546601]
  27. J Biol Chem. 2011 Dec 2;286(48):41758-66 [PMID: 21965664]
  28. Genetics. 2002 Nov;162(3):1169-77 [PMID: 12454064]
  29. FEBS Lett. 2012 Jul 30;586(16):2306-12 [PMID: 22749910]
  30. Cancer Lett. 2005 Mar 10;219(2):125-35 [PMID: 15723711]
  31. Genetics. 2008 May;179(1):249-62 [PMID: 18458109]
  32. Mol Cell. 2010 Jan 29;37(2):259-72 [PMID: 20122407]
  33. EMBO J. 2000 Dec 15;19(24):6675-85 [PMID: 11118202]
  34. Genetics. 2014 Dec;198(4):1347-56 [PMID: 25249454]
  35. Curr Biol. 2003 Sep 16;13(18):1641-7 [PMID: 13678597]
  36. Nucleic Acids Res. 2012 Jul;40(13):5795-818 [PMID: 22467216]
  37. DNA Repair (Amst). 2008 Jun 1;7(6):941-50 [PMID: 18472307]
  38. Nature. 2010 Oct 14;467(7317):839-43 [PMID: 20944745]
  39. BMC Mol Biol. 2008;9:9 [PMID: 18211699]
  40. Mol Cell. 2013 Aug 22;51(4):440-53 [PMID: 23973374]
  41. Trends Biochem Sci. 2002 Aug;27(8):384-6 [PMID: 12151216]
  42. DNA Repair (Amst). 2012 Oct 1;11(10):781-8 [PMID: 22889934]
  43. Genetics. 1995 Sep;141(1):159-79 [PMID: 8536965]
  44. Mol Cells. 2013 Nov;36(5):446-54 [PMID: 24213600]
  45. Nat Methods. 2013 Oct;10(10):1028-34 [PMID: 23995389]
  46. Genetics. 2006 Jun;173(2):697-708 [PMID: 16547095]
  47. J Biol Chem. 2002 Mar 8;277(10):8406-11 [PMID: 11744692]
  48. Genetics. 1996 Dec;144(4):1425-36 [PMID: 8978031]
  49. Genetics. 1979 Jan;91(1):67-94 [PMID: 17248881]
  50. Nucleic Acids Res. 2013 Apr;41(8):4525-34 [PMID: 23460207]
  51. Genes Dev. 2010 Jun 15;24(12):1201-7 [PMID: 20551169]
  52. J Biol Chem. 2012 Jun 8;287(24):20231-9 [PMID: 22465956]
  53. Semin Cell Dev Biol. 2011 Oct;22(8):898-905 [PMID: 21821141]
  54. Nat Commun. 2015;6:7834 [PMID: 26215801]
  55. Genetics. 2007 Aug;176(4):2027-33 [PMID: 17565963]
  56. Chromosoma. 2003 Jul;112(1):6-16 [PMID: 12684824]

Grants

  1. P40 OD010440/NIH HHS
  2. R01 ES024872/NIEHS NIH HHS
  3. R01 GM104007/NIGMS NIH HHS

MeSH Term

Animals
CRISPR-Cas Systems
Caenorhabditis elegans
Caenorhabditis elegans Proteins
Carrier Proteins
Cell Line
Gene Expression
Gene Order
Genetic Loci
Germ-Line Mutation
Homologous Recombination
Multiprotein Complexes
Mutagens
Mutation
Protein Binding
Protein Interaction Domains and Motifs
Protein Interaction Mapping
Rad51 Recombinase
Recombinational DNA Repair

Chemicals

Caenorhabditis elegans Proteins
Carrier Proteins
Multiprotein Complexes
Mutagens
RIP-1 protein, C elegans
Rad51 Recombinase
rad-51 protein, C elegans

Word Cloud

Created with Highcharts 10.0.0complexShuSWS-1HRsws-1RIP-1RAD-51RAD51SWIMparalogsyeastelegansRFS-1HomologousrecombinationDNAgenomeinstabilityhomologousfilamentpromotesfunctiondomainCaenorhabditismitoticcamptothecininteractionrepairscytotoxicdouble-strandbreaksDSBshighfidelityDeficienciesresultkeyearlystepsearchinvasiontemplatesingle-strandednucleoproteincomposeddomain-containingproteininteractingregulatingdynamicsDespiteorthologsthroughouteukaryotesunderstandingextensivelycharacterizedbuddingEvolutionaryanalysisidentifiedputativehomologmemberShu2UsingCRISPR-inducednonsensealleleshowmeioticnucleimutantsexhibitsensitivityDSB-inducingagentsfailformfocifollowingtreatmentPhenotypicsimilaritiestworfs-1rip-1suggesttogetherIndeeddetectdirecttwo-hybridassaymediatedWalkerBmotifFurthermorebridgessuggestingfacilitatesformationproposecomposeCworkprovidesnewmodelstudyingdisruptioncontextmulticellularorganismimportantimplicationsmutationshumanassociatedPromotionRecombinationComplexParalogsparaloghelq-1

Similar Articles

Cited By