Sympathetic nervous system contributes to enhanced corticosterone levels following chronic stress.

Steven A Lowrance, Amy Ionadi, Erin McKay, Xavier Douglas, John D Johnson
Author Information
  1. Steven A Lowrance: Department of Biological Sciences, Kent State University, Kent, OH 44242 USA.
  2. Amy Ionadi: Department of Biological Sciences, Kent State University, Kent, OH 44242 USA; School of Biomedical Sciences, Kent State University, Kent, OH 44242 USA.
  3. Erin McKay: Department of Biological Sciences, Kent State University, Kent, OH 44242 USA.
  4. Xavier Douglas: Department of Biological Sciences, Kent State University, Kent, OH 44242 USA.
  5. John D Johnson: Department of Biological Sciences, Kent State University, Kent, OH 44242 USA; School of Biomedical Sciences, Kent State University, Kent, OH 44242 USA. Electronic address: jjohns72@kent.edu.

Abstract

Exposure to chronic stress often elevates basal circulating glucocorticoids during the circadian nadir and leads to exaggerated glucocorticoid production following exposure to subsequent stressors. While glucocorticoid production is primarily mediated by the hypothalamic-pituitary-adrenal (HPA) axis, there is evidence that the sympathetic nervous system can affect diurnal glucocorticoid production by direct actions at the adrenal gland. Experiments here were designed to examine the role of the HPA and sympathetic nervous system in enhancing corticosterone production following chronic stress. Rats were exposed to a four-day stress paradigm or control conditions then exposed to acute restraint stress on the fifth day to examine corticosterone and ACTH responses. Repeated stressor exposure resulted in a small increase in corticosterone, but not ACTH, during the circadian nadir, and also resulted in exaggerated corticosterone production 5, 10, and 20min following restraint stress. While circulating ACTH levels increased after 5min of restraint, levels were not greater in chronic stress animals compared to controls until following 20min. Administration of astressin (a CRH antagonist) prior to restraint stress significantly reduced ACTH responses but did not prevent the sensitized corticosterone response in chronic stress animals. In contrast, administration of chlorisondamine (a ganglionic blocker) returned basal corticosterone levels in chronic stress animals to normal levels and reduced early corticosterone production following restraint (up to 10min) but did not block the exaggerated corticosterone response in chronic stress animals at 20min. These data indicate that increased sympathetic nervous system tone contributes to elevated basal and rapid glucocorticoid production following chronic stress, but HPA responses likely mediate peak corticosterone responses to stressors of longer duration.

Keywords

References

  1. Psychoneuroendocrinology. 2002 Apr;27(3):353-65 [PMID: 11818171]
  2. Neuroscience. 2011 Aug 11;188:48-54 [PMID: 21605631]
  3. Circ Res. 1956 May;4(3):276-81 [PMID: 13317018]
  4. Endocrinology. 1992 Jul;131(1):57-68 [PMID: 1319329]
  5. Mol Psychiatry. 2008 Jul;13(7):717-28 [PMID: 17700577]
  6. J Pharmacol Exp Ther. 2002 Jan;300(1):213-9 [PMID: 11752119]
  7. Horm Behav. 2008 Feb;53(2):386-94 [PMID: 18096163]
  8. Neuroendocrinology. 1997 May;65(5):360-8 [PMID: 9158068]
  9. J Neurochem. 2012 Mar;120(6):1108-16 [PMID: 22191943]
  10. Curr Hypertens Rep. 2010 Feb;12(1):10-6 [PMID: 20425153]
  11. Neuroscience. 1998 Jun;84(4):1025-39 [PMID: 9578393]
  12. Endocrinology. 1995 Aug;136(8):3299-309 [PMID: 7628364]
  13. Brain Behav Immun. 2014 Oct;41:82-9 [PMID: 24880115]
  14. Stress Health. 2012 Oct;28(4):327-32 [PMID: 22223631]
  15. Brain Res. 2000 Dec 22;887(1):118-24 [PMID: 11134596]
  16. Endocrinology. 1996 Feb;137(2):540-7 [PMID: 8593800]
  17. Neuroscience. 2006;138(4):1067-81 [PMID: 16431027]
  18. Brain Res. 1993 Dec 10;630(1-2):262-70 [PMID: 8118692]
  19. Biol Psychiatry. 1989 Sep;26(5):530-2 [PMID: 2790094]
  20. Physiol Behav. 2009 Aug 4;98(1-2):67-72 [PMID: 19393673]
  21. Brain Res. 2005 May 17;1044(1):107-15 [PMID: 15862795]
  22. Int J Obes Relat Metab Disord. 2000 Jun;24 Suppl 2:S50-5 [PMID: 10997609]
  23. Psychol Bull. 2004 Jul;130(4):601-30 [PMID: 15250815]
  24. Stress. 2007 Jun;10(2):137-43 [PMID: 17514582]
  25. Behav Neurosci. 2015 Jun;129(3):321-30 [PMID: 25914924]
  26. J Neurosci. 1998 Mar 15;18(6):2239-46 [PMID: 9482808]
  27. Brain Res Bull. 2005 Jan 30;64(6):541-56 [PMID: 15639551]
  28. Psychoneuroendocrinology. 2008 Jan;33(1):108-17 [PMID: 18037570]
  29. Endocrinology. 2009 Feb;150(2):749-61 [PMID: 18845631]
  30. Behav Brain Res. 2012 Aug 1;233(2):536-44 [PMID: 22664265]
  31. Physiol Behav. 2015 Oct 15;150:64-8 [PMID: 25747320]
  32. Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):751-6 [PMID: 18178625]
  33. J Anat. 1993 Oct;183 ( Pt 2):291-307 [PMID: 8300417]
  34. Am J Physiol Regul Integr Comp Physiol. 2006 Apr;290(4):R1128-35 [PMID: 16357102]
  35. Experientia. 1980 Mar 15;36(3):367-8 [PMID: 6245917]
  36. Soc Sci Med. 1988;26(3):333-41 [PMID: 3279522]
  37. J Physiol. 1987 Oct;391:441-50 [PMID: 2832592]
  38. Neuroendocrinology. 1989 Aug;50(2):124-31 [PMID: 2550834]
  39. Psychoneuroendocrinology. 2003 May;28(4):481-500 [PMID: 12689607]
  40. Endocrinology. 2010 May;151(5):2117-27 [PMID: 20211972]
  41. J Physiol. 1987 Sep;390:23-31 [PMID: 2832590]
  42. Eur J Neurosci. 2008 May;27(9):2250-61 [PMID: 18445216]
  43. Behav Brain Res. 1999 Dec;106(1-2):109-18 [PMID: 10595426]
  44. Endocr Rev. 2000 Feb;21(1):55-89 [PMID: 10696570]
  45. Brain Behav Immun. 2012 Nov;26(8):1249-55 [PMID: 22902349]
  46. J Neurosci. 1991 Mar;11(3):585-99 [PMID: 2002354]
  47. Neuroscience. 2004;127(3):569-77 [PMID: 15283957]
  48. Brain Res. 2010 Nov 4;1359:75-80 [PMID: 20813098]
  49. Horm Metab Res. 2006 Jul;38(7):437-41 [PMID: 16933178]
  50. Trends Endocrinol Metab. 2008 Jul;19(5):175-80 [PMID: 18394919]
  51. Prog Neuropsychopharmacol Biol Psychiatry. 2003 Sep;27(6):893-903 [PMID: 14499305]
  52. J Neuroendocrinol. 1995 Jun;7(6):475-82 [PMID: 7550295]
  53. Brain Res. 1995 Oct 16;695(2):279-82 [PMID: 8556346]
  54. Horm Behav. 2003 Jan;43(1):158-65 [PMID: 12614646]
  55. Endocrine. 2005 Dec;28(3):325-32 [PMID: 16388123]
  56. World J Biol Psychiatry. 2005;6 Suppl 2:5-22 [PMID: 16166019]
  57. Neuroendocrinology. 2002 Aug;76(2):79-92 [PMID: 12169769]
  58. Psychoneuroendocrinology. 2008 Jan;33(1):30-40 [PMID: 17993249]
  59. J Comp Neurol. 2009 Nov 10;517(2):156-65 [PMID: 19731312]
  60. Physiol Behav. 2010 Nov 2;101(4):474-82 [PMID: 20678511]
  61. J Comp Neurol. 2005 Mar 28;484(1):43-56 [PMID: 15717303]
  62. J Neuroendocrinol. 1999 Jul;11(7):513-20 [PMID: 10444308]
  63. Am J Physiol Regul Integr Comp Physiol. 2002 May;282(5):R1333-41 [PMID: 11959673]

Grants

  1. R15 MH099580/NIMH NIH HHS

MeSH Term

Adrenal Glands
Adrenocorticotropic Hormone
Animals
Circadian Rhythm
Corticosterone
Glucocorticoids
Hypothalamo-Hypophyseal System
Male
Pituitary-Adrenal System
Rats
Rats, Inbred F344
Receptors, Glucocorticoid
Stress, Physiological
Stress, Psychological
Sympathetic Nervous System

Chemicals

Glucocorticoids
Receptors, Glucocorticoid
Adrenocorticotropic Hormone
Corticosterone

Word Cloud

Created with Highcharts 10.0.0stresscorticosteronechronicproductionfollowingrestraintACTHlevelsglucocorticoidHPAnervoussystemresponsesanimalsbasalexaggeratedsympathetic20mincirculatingcircadiannadirexposurestressorsaxisexamineexposedresultedincreasedCRHreducedresponseblockercontributesExposureoftenelevatesglucocorticoidsleadssubsequentprimarilymediatedhypothalamic-pituitary-adrenalevidencecanaffectdiurnaldirectactionsadrenalglandExperimentsdesignedroleenhancingRatsfour-dayparadigmcontrolconditionsacutefifthdayRepeatedstressorsmallincreasealso5105mingreatercomparedcontrolsAdministrationastressinantagonistpriorsignificantlypreventsensitizedcontrastadministrationchlorisondamineganglionicreturnednormalearly10minblockdataindicatetoneelevatedrapidlikelymediatepeaklongerdurationSympatheticenhancedCorticosteroneGanglionic

Similar Articles

Cited By