Preparing for Winter: The Transcriptomic Response Associated with Different Day Lengths in Drosophila montana.

Darren J Parker, Michael G Ritchie, Maaria Kankare
Author Information
  1. Darren J Parker: Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, KY16 9TH, UK djp39@st-andrews.ac.uk.
  2. Michael G Ritchie: Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, KY16 9TH, UK.
  3. Maaria Kankare: Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland.

Abstract

At northern latitudes, the most robust cue for assessing the onset of winter is the shortening of day lengths. Many species use day length as a cue to increase their cold tolerance and/or enter into diapause, but little is known about changes in gene expression that occur under different day lengths. We investigate the gene expression changes associated with differences in light/dark cycles in Drosophila montana, a northerly distributed species with a strong adult photoperiodic reproductive diapause. To examine gene expression changes induced by light both prior to and during diapause, we used both nondiapausing and diapausing flies. We found that the majority of genes that are differentially expressed between different day lengths in nondiapausing and diapausing flies differ. However, the biological processes involved were broadly similar. These included neuron development and metabolism, which are largely consistent with an increase in cold tolerance previously observed to occur in these flies. We also found that many genes associated with reproduction change in expression level between different day lengths, suggesting that D. montana use changes in day length to cue changes in reproduction both before and after entering into diapause. Finally, we also identified several interesting candidate genes for light-induced changes including Lsp2, para, and Ih.

Keywords

References

  1. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  2. Science. 1970 Sep 25;169(3952):1269-78 [PMID: 17772511]
  3. Mol Biol Evol. 2016 Mar;33(3):707-20 [PMID: 26568616]
  4. Physiol Genomics. 2009 Nov 6;39(3):202-9 [PMID: 19706691]
  5. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  6. Annu Rev Entomol. 2002;47:93-122 [PMID: 11729070]
  7. J Insect Physiol. 2001 Jul;47(7):759-766 [PMID: 11356423]
  8. Neurosci Biobehav Rev. 1992 Fall;16(3):399-413 [PMID: 1528527]
  9. Nucleic Acids Res. 2009 Jan;37(Database issue):D555-9 [PMID: 18948289]
  10. Arch Insect Biochem Physiol. 1992;20(2):119-33 [PMID: 1504317]
  11. Heredity (Edinb). 2015 Jul;115(1):13-21 [PMID: 25669607]
  12. PLoS Biol. 2015 Apr;13(4):e1002115 [PMID: 25831426]
  13. J Insect Physiol. 2012 May;58(5):704-9 [PMID: 22360999]
  14. Annu Rev Physiol. 1995;57:19-42 [PMID: 7778864]
  15. Am J Physiol. 1990 Aug;259(2 Pt 2):R191-6 [PMID: 2201212]
  16. Nucleic Acids Res. 2009 Jan;37(1):1-13 [PMID: 19033363]
  17. Ecol Evol. 2011 Oct;1(2):160-8 [PMID: 22393492]
  18. Science. 1986 Jan 17;231(4735):234-41 [PMID: 2417316]
  19. Cell Stem Cell. 2011 May 6;8(5):580-93 [PMID: 21549331]
  20. Science. 1971 Jan 8;171(3966):29-36 [PMID: 17737985]
  21. Genetics. 2008 Oct;180(2):873-84 [PMID: 18723887]
  22. Annu Rev Entomol. 2011;56:103-21 [PMID: 20690828]
  23. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  24. J Exp Biol. 2004 Apr;207(Pt 9):1509-21 [PMID: 15037645]
  25. Brief Funct Genomics. 2012 Sep;11(5):395-404 [PMID: 22843979]
  26. Comp Biochem Physiol B Biochem Mol Biol. 2003 Jul;135(3):407-19 [PMID: 12831761]
  27. Sci Rep. 2015;5:11197 [PMID: 26063442]
  28. PLoS One. 2010;5(3):e9574 [PMID: 20221437]
  29. Insect Mol Biol. 2012 Feb;21(1):107-18 [PMID: 22122733]
  30. Comp Biochem Physiol A Mol Integr Physiol. 2011 Oct;160(2):245-51 [PMID: 21729762]
  31. Insect Biochem Mol Biol. 2005 May;35(5):505-14 [PMID: 15804582]
  32. PLoS One. 2012;7(5):e36477 [PMID: 22574167]
  33. Annu Rev Physiol. 1998;60:55-72 [PMID: 9558454]
  34. Trends Genet. 2009 May;25(5):217-25 [PMID: 19375812]
  35. PLoS One. 2014;9(11):e113051 [PMID: 25393614]
  36. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  37. Curr Opin Neurobiol. 2012 Aug;22(4):724-34 [PMID: 22326854]
  38. Insect Biochem Mol Biol. 1996 Sep-Oct;26(8-9):755-65 [PMID: 9014325]
  39. Bioinformatics. 2010 Mar 15;26(6):849-50 [PMID: 20207696]
  40. J Insect Physiol. 2012 Dec;58(12):1541-7 [PMID: 23026647]
  41. Proc Natl Acad Sci U S A. 1971 May;68(5):890-3 [PMID: 5280526]
  42. J Exp Biol. 2015 Feb 1;218(Pt 3):412-22 [PMID: 25653422]

MeSH Term

Animals
Chromosome Mapping
Cluster Analysis
Computational Biology
Drosophila
Female
Gene Expression Profiling
Gene Expression Regulation
Gene Ontology
Molecular Sequence Annotation
Photoperiod
Seasons
Transcriptome

Word Cloud

Created with Highcharts 10.0.0daychangesdiapauseexpressionlengthsgenecuedifferentmontanafliesgenesspeciesuselengthincreasecoldtoleranceoccurassociatedDrosophilanondiapausingdiapausingfoundalsoreproductionnorthernlatitudesrobustassessingonsetwintershorteningManyand/orenterlittleknowninvestigatedifferenceslight/darkcyclesnortherlydistributedstrongadultphotoperiodicreproductiveexamineinducedlightpriorusedmajoritydifferentiallyexpresseddifferHoweverbiologicalprocessesinvolvedbroadlysimilarincludedneurondevelopmentmetabolismlargelyconsistentpreviouslyobservedmanychangelevelsuggestingDenteringFinallyidentifiedseveralinterestingcandidatelight-inducedincludingLsp2paraIhPreparingWinter:TranscriptomicResponseAssociatedDifferentDayLengthsoverwinteringphotoperiodtranscriptomics

Similar Articles

Cited By