Broad Spectrum Antimicrobial Activity of Forest-Derived Soil Actinomycete, Nocardia sp. PB-52.

Priyanka Sharma, Mohan C Kalita, Debajit Thakur
Author Information
  1. Priyanka Sharma: Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati, India.
  2. Mohan C Kalita: Department of Biotechnology, Gauhati University Guwahati, India.
  3. Debajit Thakur: Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati, India.

Abstract

A mesophilic actinomycete strain designated as PB-52 was isolated from soil samples of Pobitora Wildlife Sanctuary of Assam, India. Based on phenotypic and molecular characteristics, the strain was identified as Nocardia sp. which shares 99.7% sequence similarity with Nocardia niigatensis IFM 0330 (NR_112195). The strain is a Gram-positive filamentous bacterium with rugose spore surface which exhibited a wide range of antimicrobial activity against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative bacteria, and yeasts. Optimization for the growth and antimicrobial activity of the strain PB-52 was carried out in batch culture under shaking condition. The optimum growth and antimicrobial potential of the strain were recorded in GLM medium at 28°C, initial pH 7.4 of the medium and incubation period of 8 days. Based on polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) gene-targeted PCR amplification, the occurrence of both of these biosynthetic pathways was detected which might be involved in the production of antimicrobial compounds in PB-52. Extract of the fermented broth culture of PB-52 was prepared with organic solvent extraction method using ethyl acetate. The ethyl acetate extract of PB-52 (EA-PB-52) showed lowest minimum inhibitory concentration (MIC) against S. aureus MTCC 96 (0.975 μg/mL) whereas highest was recorded against Klebsiella pneumoniae ATCC 13883 (62.5 μg/mL). Scanning electron microscopy (SEM) revealed that treatment of the test microorganisms with EA-PB-52 destroyed the targeted cells with prominent loss of cell shape and integrity. In order to determine the constituents responsible for its antimicrobial activity, EA-PB-52 was subjected to chemical analysis using gas chromatography-mass spectrometry (GC-MS). GC-MS analysis showed the presence of twelve different chemical constituents in the extract, some of which are reported to possess diverse biological activity. These results confirmed that the presence of bioactive constituents in EA-PB-52 could be a promising source for the development of potent antimicrobial agents effective against wide range of microbial pathogens including MRSA.

Keywords

References

  1. Microbiol Res. 2010 Mar 31;165(3):199-210 [PMID: 19577444]
  2. Asian Pac J Trop Med. 2014 Sep;7S1:S238-43 [PMID: 25312129]
  3. ScientificWorldJournal. 2014;2014:698178 [PMID: 25162061]
  4. Antonie Van Leeuwenhoek. 2005 Jan;87(1):37-42 [PMID: 15726289]
  5. Kaohsiung J Med Sci. 2014 Sep;30(9):435-46 [PMID: 25224766]
  6. Front Microbiol. 2015 Apr 07;6:273 [PMID: 25904906]
  7. J Gen Microbiol. 1990 Aug;136(8):1447-54 [PMID: 2262785]
  8. Mol Biol Evol. 2007 Aug;24(8):1596-9 [PMID: 17488738]
  9. Int J Syst Bacteriol. 1995 Apr;45(2):240-5 [PMID: 7537058]
  10. Biosci Biotechnol Biochem. 2001 Aug;65(8):1856-8 [PMID: 11577728]
  11. Int J Syst Evol Microbiol. 2012 Mar;62(Pt 3):716-721 [PMID: 22140171]
  12. J Antibiot (Tokyo). 2009 Nov;62(11):613-9 [PMID: 19745839]
  13. PLoS One. 2013 Aug 16;8(8):e72520 [PMID: 23977310]
  14. Lett Appl Microbiol. 2009 Oct;49(4):484-90 [PMID: 19708882]
  15. Front Microbiol. 2015 May 05;6:413 [PMID: 25999937]
  16. BMC Microbiol. 2014 Nov 19;14:278 [PMID: 25406714]
  17. J Antibiot (Tokyo). 2005 Jan;58(1):1-26 [PMID: 15813176]
  18. Chem Cent J. 2014 Jan 03;8(1):1 [PMID: 24386928]
  19. J Gen Appl Microbiol. 2007 Jun;53(3):159-66 [PMID: 17726296]
  20. Scanning. 2011 Nov-Dec;33(6):446-9 [PMID: 21732388]
  21. Front Microbiol. 2015 Oct 01;6:1048 [PMID: 26483773]
  22. FEMS Microbiol Lett. 2014 Jun;355(2):170-6 [PMID: 24801439]
  23. Am J Clin Pathol. 1966 Apr;45(4):493-6 [PMID: 5325707]
  24. J Antibiot (Tokyo). 2004 Dec;57(12):797-802 [PMID: 15745114]
  25. 3 Biotech. 2015 Apr;5(2):153-164 [PMID: 28324576]
  26. Pol J Microbiol. 2008;57(1):35-9 [PMID: 18610654]
  27. Front Microbiol. 2015 Dec 16;6:1398 [PMID: 26733951]
  28. Appl Environ Microbiol. 2009 Oct;75(19):6176-86 [PMID: 19648362]
  29. J Antibiot (Tokyo). 2010 Jan;63(1):37-9 [PMID: 19927167]
  30. J Bacteriol. 1991 Jan;173(2):697-703 [PMID: 1987160]
  31. Chem Biol. 1999 Dec;6(12):R319-25 [PMID: 10631508]
  32. Microbiology (Reading). 2014 Apr;160(Pt 4):778-788 [PMID: 24430493]
  33. J Antibiot (Tokyo). 1979 May;32(5):427-35 [PMID: 528390]
  34. Antonie Van Leeuwenhoek. 2010 Aug;98(2):143-50 [PMID: 20390355]
  35. Mol Biol Evol. 1987 Jul;4(4):406-25 [PMID: 3447015]
  36. Front Microbiol. 2015 Sep 25;6:1014 [PMID: 26441937]
  37. Mar Biotechnol (NY). 2012 Jun;14(3):270-80 [PMID: 22002467]
  38. World J Microbiol Biotechnol. 2012 Mar;28(3):943-51 [PMID: 22805815]
  39. J Antimicrob Chemother. 2001 Jul;48 Suppl 1:5-16 [PMID: 11420333]
  40. Front Microbiol. 2015 Aug 20;6:854 [PMID: 26347733]
  41. Front Microbiol. 2015 Nov 26;6:1316 [PMID: 26635777]
  42. Mar Drugs. 2014 May 22;12(5):3046-59 [PMID: 24857962]
  43. Front Microbiol. 2014 Aug 21;5:446 [PMID: 25191320]
  44. Nat Prod Res. 2014;28(19):1607-12 [PMID: 24960332]
  45. Environ Toxicol. 2003 Apr;18(2):78-93 [PMID: 12635096]
  46. Extremophiles. 2013 Nov;17(6):1045-59 [PMID: 24085523]
  47. J Antibiot (Tokyo). 2007 Mar;60(3):211-5 [PMID: 17446695]
  48. Front Microbiol. 2015 Aug 20;6:856 [PMID: 26347734]
  49. Clin Infect Dis. 2004 Mar 15;38(6):864-70 [PMID: 14999632]
  50. Microb Ecol. 2005 Jan;49(1):10-24 [PMID: 15614464]
  51. World J Microbiol Biotechnol. 2012 Aug;28(8):2703-12 [PMID: 22806196]
  52. Int J Syst Evol Microbiol. 2004 Mar;54(Pt 2):563-569 [PMID: 15023976]
  53. Appl Microbiol Biotechnol. 2008 Sep;80(4):685-95 [PMID: 18679673]
  54. J Antibiot (Tokyo). 2008 Jun;61(6):379-86 [PMID: 18667786]
  55. BMC Microbiol. 2014 Nov 30;14:291 [PMID: 25433533]
  56. Appl Microbiol Biotechnol. 2009 Jun;83(3):435-45 [PMID: 19190903]
  57. Evolution. 1985 Jul;39(4):783-791 [PMID: 28561359]
  58. World J Microbiol Biotechnol. 2012 May;28(5):2125-37 [PMID: 22806035]
  59. Chem Biol. 2012 Jan 27;19(1):3-10 [PMID: 22284349]
  60. Antimicrob Agents Chemother. 1998 Oct;42(10):2564-8 [PMID: 9756756]
  61. Nature. 2000 Feb 24;403(6772):853-8 [PMID: 10706275]
  62. Indian J Med Res. 2005 Mar;121(3):164-70 [PMID: 15802758]
  63. Int Sch Res Notices. 2014 Nov 09;2014:812974 [PMID: 27437460]
  64. Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 [PMID: 9396791]
  65. Int J Syst Evol Microbiol. 2004 Jan;54(Pt 1):125-130 [PMID: 14742469]
  66. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  67. Molecules. 2012 Feb 21;17(2):2103-18 [PMID: 22354188]
  68. Antonie Van Leeuwenhoek. 2000 Dec;78(3-4):399-405 [PMID: 11386363]
  69. Arch Pharm Res. 2008 Dec;31(12):1572-7 [PMID: 19099226]
  70. Trends Cell Biol. 1999 Dec;9(12):M2-5 [PMID: 10611670]

Word Cloud

Created with Highcharts 10.0.0antimicrobialPB-52strainactivityNocardiaEA-PB-52spconstituentsGC-MSBasedGram-positivewiderangebacteriaincludingaureusMRSAgrowthculturerecordedmediumbiosyntheticusingethylacetateextractshowedμg/mLSEMchemicalanalysispresencemicrobialpathogensmesophilicactinomycetedesignatedisolatedsoilsamplesPobitoraWildlifeSanctuaryAssamIndiaphenotypicmolecularcharacteristicsidentifiedshares997%sequencesimilarityniigatensisIFM0330NR_112195filamentousbacteriumrugosesporesurfaceexhibitedmethicillin-resistantStaphylococcusGram-negativeyeastsOptimizationcarriedbatchshakingconditionoptimumpotentialGLM28°CinitialpH74incubationperiod8dayspolyketidesynthasesPKSnon-ribosomalpeptidesynthetasesNRPSgene-targetedPCRamplificationoccurrencepathwaysdetectedmightinvolvedproductioncompoundsExtractfermentedbrothpreparedorganicsolventextractionmethodlowestminimuminhibitoryconcentrationMICSMTCC960975whereashighestKlebsiellapneumoniaeATCC13883625Scanningelectronmicroscopyrevealedtreatmenttestmicroorganismsdestroyedtargetedcellsprominentlosscellshapeintegrityorderdetermineresponsiblesubjectedgaschromatography-massspectrometrytwelvedifferentreportedpossessdiversebiologicalresultsconfirmedbioactivepromisingsourcedevelopmentpotentagentseffectiveBroadSpectrumAntimicrobialActivityForest-DerivedSoilActinomycetegenesculturingconditions

Similar Articles

Cited By (38)