A Hybrid of Deep Network and Hidden Markov Model for MCI Identification with Resting-State fMRI.

Heung-Il Suk, Seong-Whan Lee, Dinggang Shen
Author Information
  1. Heung-Il Suk: Department of Brain and Cognitive Engineering, Korea University, Republic of Korea.
  2. Seong-Whan Lee: Department of Brain and Cognitive Engineering, Korea University, Republic of Korea.
  3. Dinggang Shen: Department of Brain and Cognitive Engineering, Korea University, Republic of Korea ; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA.

Abstract

In this paper, we propose a novel method for modelling functional dynamics in resting-state fMRI (rs-fMRI) for Mild Cognitive Impairment (MCI) identification. Specifically, we devise a hybrid architecture by combining Deep Auto-Encoder (DAE) and Hidden Markov Model (HMM). The roles of DAE and HMM are, respectively, to discover hierarchical non-linear relations among features, by which we transform the original features into a lower dimension space, and to model dynamic characteristics inherent in rs-fMRI, , internal state changes. By building a generative model with HMMs for each class individually, we estimate the data likelihood of a test subject as MCI or normal healthy control, based on which we identify the clinical label. In our experiments, we achieved the maximal accuracy of 81.08% with the proposed method, outperforming state-of-the-art methods in the literature.

References

  1. Neuroimage. 2013 Dec;83:937-50 [PMID: 23872496]
  2. Neural Comput. 2006 Jul;18(7):1527-54 [PMID: 16764513]
  3. Neuroimage. 2011 Jul 15;57(2):362-77 [PMID: 21440069]
  4. Brain Struct Funct. 2014 Mar;219(2):641-56 [PMID: 23468090]
  5. Neuroimage. 2012 Nov 15;63(3):1712-9 [PMID: 22796990]
  6. Magn Reson Med. 1995 Oct;34(4):537-41 [PMID: 8524021]
  7. Neuroimage. 2009 May 15;46(1):87-104 [PMID: 19457397]
  8. Med Image Anal. 2007 Feb;11(1):1-20 [PMID: 17097334]
  9. Neuroimage. 2013 Oct 15;80:360-78 [PMID: 23707587]
  10. Neuroimage. 2014 Aug 1;96:245-60 [PMID: 24680869]
  11. Inf Process Med Imaging. 2013;23:426-37 [PMID: 24683988]
  12. Neuroinformatics. 2015 Jul;13(3):277-95 [PMID: 25501275]
  13. PLoS One. 2012;7(11):e49340 [PMID: 23226208]
  14. Neuroimage. 2010 Sep;52(3):1059-69 [PMID: 19819337]
  15. Science. 2006 Jul 28;313(5786):504-7 [PMID: 16873662]

Grants

  1. R01 EB008374/NIBIB NIH HHS

Word Cloud

Created with Highcharts 10.0.0MCImethodfMRIrs-fMRIDeepDAEHiddenMarkovModelHMMfeaturesmodelpaperproposenovelmodellingfunctionaldynamicsresting-stateMildCognitiveImpairmentidentificationSpecificallydevisehybridarchitecturecombiningAuto-Encoderrolesrespectivelydiscoverhierarchicalnon-linearrelationsamongtransformoriginallowerdimensionspacedynamiccharacteristicsinherentinternalstatechangesbuildinggenerativeHMMsclassindividuallyestimatedatalikelihoodtestsubjectnormalhealthycontrolbasedidentifyclinicallabelexperimentsachievedmaximalaccuracy8108%proposedoutperformingstate-of-the-artmethodsliteratureHybridNetworkIdentificationResting-State

Similar Articles

Cited By (4)