Gut Bacterial Community of the Xylophagous Cockroaches Cryptocercus punctulatus and Parasphaeria boleiriana.

Mercedes Berlanga, Carlos Llorens, Jaume Comas, Ricardo Guerrero
Author Information
  1. Mercedes Berlanga: Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.
  2. Carlos Llorens: Unity of Genomics. Scientific and Technological Centers, University of Barcelona (CCiTUB), Barcelona, Spain.
  3. Jaume Comas: Unity of Genomics. Scientific and Technological Centers, University of Barcelona (CCiTUB), Barcelona, Spain.
  4. Ricardo Guerrero: Laboratory of Molecular Microbiology and Antimicrobials, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona-IDIBELL, Barcelona, Spain.

Abstract

Cryptocercus punctulatus and Parasphaeria boleiriana are two distantly related xylophagous and subsocial cockroaches. Cryptocercus is related to termites. Xylophagous cockroaches and termites are excellent model organisms for studying the symbiotic relationship between the insect and their microbiota. In this study, high-throughput 454 pyrosequencing of 16S rRNA was used to investigate the diversity of metagenomic gut communities of C. punctulatus and P. boleiriana, and thereby to identify possible shifts in symbiont allegiances during cockroaches evolution. Our results revealed that the hindgut prokaryotic communities of both xylophagous cockroaches are dominated by members of four Bacteria phyla: Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. Other identified phyla were Spirochaetes, Planctomycetes, candidatus Saccharibacteria (formerly TM7), and Acidobacteria, each of which represented 1-2% of the total population detected. Community similarity based on phylogenetic relatedness by unweighted UniFrac analyses indicated that the composition of the bacterial community in the two species was significantly different (P < 0.05). Phylogenetic analysis based on the characterized clusters of Bacteroidetes, Spirochaetes, and Deltaproteobacteria showed that many OTUs present in both cockroach species clustered with sequences previously described in termites and other cockroaches, but not with those from other animals or environments. These results suggest that, during their evolution, those cockroaches conserved several bacterial communities from the microbiota of a common ancestor. The ecological stability of those microbial communities may imply the important functional role for the survival of the host of providing nutrients in appropriate quantities and balance.

References

  1. PLoS One. 2013;8(4):e61218 [PMID: 23613815]
  2. Appl Environ Microbiol. 2012 Jul;78(13):4691-701 [PMID: 22544239]
  3. PLoS One. 2015;10(10):e0140014 [PMID: 26444989]
  4. Springerplus. 2013 Nov 15;2:609 [PMID: 24324923]
  5. Int Microbiol. 2013 Sep;16(3):133-43 [PMID: 24568029]
  6. PLoS One. 2010;5(3):e9768 [PMID: 20339542]
  7. Biosci Biotechnol Biochem. 2007 Apr;71(4):906-15 [PMID: 17420599]
  8. Bioinformatics. 2012 Dec 1;28(23):3150-2 [PMID: 23060610]
  9. Proc Biol Sci. 2009 Jan 22;276(1655):239-45 [PMID: 18812290]
  10. Biol Lett. 2007 Jun 22;3(3):331-5 [PMID: 17412673]
  11. FEMS Microbiol Ecol. 2000 Oct 1;34(1):17-26 [PMID: 11053732]
  12. Annu Rev Entomol. 2012;57:449-68 [PMID: 22149269]
  13. Mol Ecol. 2012 Dec;21(24):6134-51 [PMID: 23017151]
  14. Appl Environ Microbiol. 2014 Sep;80(17):5254-64 [PMID: 24928884]
  15. Mol Biol Evol. 2003 Jun;20(6):907-13 [PMID: 12716997]
  16. Environ Microbiol. 1999 Aug;1(4):331-45 [PMID: 11207751]
  17. Environ Microbiol. 2006 Jan;8(1):11-20 [PMID: 16343317]
  18. Appl Environ Microbiol. 2014 Apr;80(7):2261-9 [PMID: 24487532]
  19. Mol Phylogenet Evol. 2007 May;43(2):616-26 [PMID: 17291786]
  20. Mol Ecol. 2013 Apr;22(7):1836-53 [PMID: 23379767]
  21. Appl Environ Microbiol. 1994 Jun;60(6):1822-6 [PMID: 16349275]
  22. FEMS Microbiol Ecol. 2015 Feb;91(2):1-14 [PMID: 25764554]
  23. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  24. Int Microbiol. 2011 Jun;14(2):83-93 [PMID: 22069152]
  25. Front Cell Infect Microbiol. 2014;4:59 [PMID: 24860790]
  26. ISME J. 2011 Jul;5(7):1133-42 [PMID: 21326336]
  27. BMC Evol Biol. 2009;9:158 [PMID: 19586555]
  28. Mol Ecol. 2014 Sep;23(18):4631-44 [PMID: 25066007]
  29. Syst Appl Microbiol. 2010 Oct;33(6):291-9 [PMID: 20817437]
  30. Trends Microbiol. 2008 Jul;16(7):345-52 [PMID: 18513972]
  31. Bioinformatics. 2011 Mar 15;27(6):863-4 [PMID: 21278185]
  32. Mol Phylogenet Evol. 2008 Mar;46(3):809-17 [PMID: 18226554]
  33. PLoS One. 2014;9(1):e85861 [PMID: 24454939]
  34. Appl Environ Microbiol. 2015 Feb;81(3):1059-70 [PMID: 25452280]
  35. Int Microbiol. 2007 Jun;10(2):133-9 [PMID: 17661292]
  36. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10224-30 [PMID: 25979941]
  37. Nucleic Acids Res. 2009 Jun;37(10):e76 [PMID: 19417062]
  38. Nat Rev Microbiol. 2014 Mar;12(3):168-80 [PMID: 24487819]
  39. Annu Rev Microbiol. 2015;69:145-66 [PMID: 26195303]
  40. Int Microbiol. 2014 Jun;17(2):99-109 [PMID: 26418854]
  41. Environ Microbiol Rep. 2010 Aug;2(4):554-9 [PMID: 23766225]
  42. FEMS Microbiol Rev. 2013 Sep;37(5):699-735 [PMID: 23692388]
  43. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  44. Cell Mol Life Sci. 2011 Apr;68(8):1311-25 [PMID: 21365277]
  45. ISME J. 2012 Jul;6(7):1302-13 [PMID: 22189498]
  46. Environ Microbiol. 2015 Dec;17(12):4942-53 [PMID: 26079531]
  47. Appl Environ Microbiol. 2011 Jul;77(13):4303-12 [PMID: 21571887]
  48. Bioinformatics. 2009 May 15;25(10):1335-7 [PMID: 19307242]
  49. Nat Rev Genet. 2008 Mar;9(3):218-29 [PMID: 18268509]
  50. Science. 1999 Jan 29;283(5402):686-9 [PMID: 9924028]
  51. BMC Bioinformatics. 2006;7:371 [PMID: 16893466]
  52. BMC Genomics. 2014;15:1096 [PMID: 25495900]
  53. Int Microbiol. 2009 Dec;12(4):227-36 [PMID: 20112227]
  54. Microbiome. 2015 Feb 25;3:5 [PMID: 25830022]
  55. J Eukaryot Microbiol. 2013 Jul-Aug;60(4):335-41 [PMID: 23590673]
  56. Springerplus. 2015 Sep 02;4:471 [PMID: 26355944]
  57. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15678-83 [PMID: 26644557]
  58. J Gen Appl Microbiol. 2005 Apr;51(2):57-64 [PMID: 15942866]

MeSH Term

Animals
Bacteria
Cockroaches
DNA, Bacterial
DNA, Ribosomal
Gastrointestinal Tract
Phylogeny
Sequence Analysis, DNA

Chemicals

DNA, Bacterial
DNA, Ribosomal

Word Cloud

Created with Highcharts 10.0.0cockroachescommunitiesCryptocercuspunctulatusboleirianatermitesParasphaeriatworelatedxylophagousXylophagousmicrobiotaPevolutionresultsBacteroidetesSpirochaetesCommunitybasedbacterialspeciesdistantlysubsocialexcellentmodelorganismsstudyingsymbioticrelationshipinsectstudyhigh-throughput454pyrosequencing16SrRNAusedinvestigatediversitymetagenomicgutCtherebyidentifypossibleshiftssymbiontallegiancesrevealedhindgutprokaryoticdominatedmembersfourBacteriaphyla:FirmicutesProteobacteriaActinobacteriaidentifiedphylaPlanctomycetescandidatusSaccharibacteriaformerlyTM7Acidobacteriarepresented1-2%totalpopulationdetectedsimilarityphylogeneticrelatednessunweightedUniFracanalysesindicatedcompositioncommunitysignificantlydifferent<005PhylogeneticanalysischaracterizedclustersDeltaproteobacteriashowedmanyOTUspresentcockroachclusteredsequencespreviouslydescribedanimalsenvironmentssuggestconservedseveralcommonancestorecologicalstabilitymicrobialmayimplyimportantfunctionalrolesurvivalhostprovidingnutrientsappropriatequantitiesbalanceGutBacterialCockroaches

Similar Articles

Cited By