Population Dynamics of Phage and Bacteria in Spatially Structured Habitats Using Phage λ and Escherichia coli.

Namiko Mitarai, Stanley Brown, Kim Sneppen
Author Information
  1. Namiko Mitarai: Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, DenmarkPrinceton University mitarai@nbi.dk. ORCID
  2. Stanley Brown: Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, DenmarkPrinceton University.
  3. Kim Sneppen: Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, DenmarkPrinceton University.

Abstract

Bacteria living in physically structured habitats are exposed heterogeneously to both resources and different types of phages. While there have been numerous experimental approaches to examine spatially distributed bacteria exposed to phages, there is little theory to guide the design of these experiments, interpret their results, or expand the inferences drawn to a broader ecological and evolutionary context. Plaque formation provides a window into understanding phage-bacterium interactions in physically structured populations, including surfaces, semisolids, and biofilms. We develop models to address the plaque dynamics for a temperate phage and its virulent mutants. The models are compared with phage λ-Escherichia coli system to quantify their applicability. We found that temperate phages gave an increasing number of gradually smaller colonies as the distance increased from the plaque center. For low-lysogen frequency this resulted in plaques with most of the visible colonies at an intermediate distance between the center and periphery. Using spot inoculation, where phages in excess of bacteria were inoculated in a circular area, we measured the frequency and spatial distribution of lysogens. The spot morphology of cII-negative (cII(-)) and cIII(-) mutants of phage λ displays concentric rings of high-density lysogenic colonies. The simplest of these ring morphologies was reproduced by including multiplicity of infection (MOI) sensitivity in lysis-lysogeny decisions, but its failure to explain the occasional observation of multiple rings in cIII(-) mutant phages highlights unknown features of this phage. Our findings demonstrated advantages of temperate phages over virulent phages in exploiting limited resources in spatially distributed microbial populations.
IMPORTANCE: Phages are the most abundant organisms on earth, and yet little is known about how phages and bacterial hosts are influencing each other in density and evolution. Phages can be either virulent or temperate, a difference that is highlighted when a spatially structured bacterial population is infected. Phage λ is a temperate phage, with a capacity for dormancy that can be modified by single gene knockouts. The stochastic bias in the lysis-lysogeny decision's probability is reflected in plaque morphologies on bacterial lawns. We present a model for plaque morphology of both virulent and temperate phages, taking into account the underlying survival of bacterial microcolonies. It reproduces known plaque morphologies and speaks to advantages of temperate phages in a spatially structured environment.

References

  1. mBio. 2013 Feb 19;4(1):e00362-12 [PMID: 23422409]
  2. Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4470-5 [PMID: 15728384]
  3. Phys Rev Lett. 2002 Oct 21;89(17):178101 [PMID: 12398706]
  4. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12828-33 [PMID: 22807479]
  5. Annu Rev Biochem. 1977;46:69-94 [PMID: 20040]
  6. J Theor Biol. 1964 May;6(3):413-31 [PMID: 5875213]
  7. Theor Popul Biol. 1984 Aug;26(1):93-117 [PMID: 6484871]
  8. Microb Pathog. 1987 Feb;2(2):147-53 [PMID: 3333796]
  9. Curr Opin Microbiol. 2005 Aug;8(4):459-65 [PMID: 15979389]
  10. Virology. 1955 Nov;1(4):424-43 [PMID: 13274744]
  11. Biophys J. 2007 Jul 1;93(1):303-15 [PMID: 17434950]
  12. Biophys J. 1992 Jun;61(6):1540-9 [PMID: 1617137]
  13. J Virol. 2009 Nov;83(22):11416-20 [PMID: 19740995]
  14. Bacteriol Rev. 1953 Dec;17(4):269-337 [PMID: 13105613]
  15. Nature. 1978 Feb 9;271(5645):577-80 [PMID: 622196]
  16. Nature. 2006 Jul 6;442(7098):75-8 [PMID: 16823452]
  17. J Theor Biol. 1999 Oct 21;200(4):365-73 [PMID: 10525396]
  18. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 1):031909 [PMID: 15089324]
  19. PLoS Comput Biol. 2005 Dec;1(7):e74 [PMID: 16477325]
  20. Annu Rev Microbiol. 2000;54:799-825 [PMID: 11018145]
  21. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9535-40 [PMID: 15976021]
  22. Biochimie. 1974;56(11-12):1517-23 [PMID: 4619342]
  23. Sci Rep. 2015 Jun 02;5:10523 [PMID: 26035282]
  24. Virology. 1957 Feb;3(1):42-61 [PMID: 13409759]
  25. Biochem Biophys Res Commun. 1991 Jan 31;174(2):1009-14 [PMID: 1993042]
  26. Nucleic Acids Res. 2013 Apr;41(8):4360-77 [PMID: 23470997]
  27. Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):9070-5 [PMID: 26153419]
  28. PLoS One. 2014 Apr 17;9(4):e94690 [PMID: 24743264]
  29. J Physiol. 1981 Dec;321:225-57 [PMID: 7338810]
  30. Genetics. 1999 Mar;151(3):945-63 [PMID: 10049914]
  31. J Neurochem. 2002 Apr;81(1):80-93 [PMID: 12067240]
  32. Cell. 2002 Jan 11;108(1):13-6 [PMID: 11792317]
  33. J Bacteriol. 1984 Jul;159(1):238-42 [PMID: 6330032]
  34. PLoS Biol. 2006 Jul;4(7):e193 [PMID: 16756387]
  35. Science. 1996 Jun 28;272(5270):1910-4 [PMID: 8658163]
  36. Biophys J. 2011 Jun 22;100(12):2875-82 [PMID: 21689520]
  37. Mol Gen Genet. 1973 Apr 12;122(2):183-95 [PMID: 4573866]
  38. Biophys J. 2008 Sep 15;95(6):2673-80 [PMID: 18567629]
  39. J Mol Biol. 2009 Dec 11;394(4):681-93 [PMID: 19796646]
  40. ISME J. 2014 Nov;8(11):2317-26 [PMID: 24858781]
  41. PLoS Genet. 2010 Jul 08;6(7):e1001017 [PMID: 20628568]
  42. Science. 1992 Nov 13;258(5085):1145-8 [PMID: 1439823]
  43. BMC Microbiol. 2011 Aug 09;11:181 [PMID: 21827665]
  44. Mol Microbiol. 1998 Jul;29(2):527-43 [PMID: 9720870]
  45. Annu Rev Genet. 2005;39:409-29 [PMID: 16285866]
  46. Gene. 1981 Apr;13(3):221-5 [PMID: 6790348]
  47. Virology. 1976 Oct 15;74(2):324-31 [PMID: 790754]
  48. Annu Rev Genet. 1990;24:465-90 [PMID: 2088176]
  49. J Bacteriol. 1951 Jun;61(6):675-88 [PMID: 14850426]
  50. Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20705-10 [PMID: 19098103]
  51. Nat Rev Microbiol. 2007 Oct;5(10):801-12 [PMID: 17853907]
  52. PLoS One. 2007 Apr 11;2(4):e363 [PMID: 17426811]
  53. Virology. 1975 Jan;63(1):147-59 [PMID: 1089335]
  54. Nat Rev Microbiol. 2010 May;8(5):317-27 [PMID: 20348932]
  55. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6578-83 [PMID: 9618454]
  56. Trends Microbiol. 2005 Jun;13(6):278-84 [PMID: 15936660]
  57. J Bacteriol. 2010 Dec;192(23):6291-4 [PMID: 20889749]

MeSH Term

Bacteriophage lambda
Ecosystem
Escherichia coli
Host-Pathogen Interactions
Lysogeny

Word Cloud

Created with Highcharts 10.0.0phagestemperateplaquephagestructuredspatiallyvirulentbacterialcolonies-λmorphologiesPhageBacteriaphysicallyexposedresourcesdistributedbacterialittlepopulationsincludingmodelsmutantscolidistancecenterfrequencyUsingspotmorphologycIIIringslysis-lysogenyadvantagesPhagesknowncanlivinghabitatsheterogeneouslydifferenttypesnumerousexperimentalapproachesexaminetheoryguidedesignexperimentsinterpretresultsexpandinferencesdrawnbroaderecologicalevolutionarycontextPlaqueformationprovideswindowunderstandingphage-bacteriuminteractionssurfacessemisolidsbiofilmsdevelopaddressdynamicscomparedλ-Escherichiasystemquantifyapplicabilityfoundgaveincreasingnumbergraduallysmallerincreasedlow-lysogenresultedplaquesvisibleintermediateperipheryinoculationexcessinoculatedcircularareameasuredspatialdistributionlysogenscII-negativecIIdisplaysconcentrichigh-densitylysogenicsimplestringreproducedmultiplicityinfectionMOIsensitivitydecisionsfailureexplainoccasionalobservationmultiplemutanthighlightsunknownfeaturesfindingsdemonstratedexploitinglimitedmicrobialIMPORTANCE:abundantorganismsearthyethostsinfluencingdensityevolutioneitherdifferencehighlightedpopulationinfectedcapacitydormancymodifiedsinglegeneknockoutsstochasticbiasdecision'sprobabilityreflectedlawnspresentmodeltakingaccountunderlyingsurvivalmicrocoloniesreproducesspeaksenvironmentPopulationDynamicsSpatiallyStructuredHabitatsEscherichia

Similar Articles

Cited By