A combined within-host and between-hosts modelling framework for the evolution of resistance to antimalarial drugs.

Mathieu Legros, Sebastian Bonhoeffer
Author Information
  1. Mathieu Legros: ETH Zürich, Institut für Integrative Biologie, 8092 Zürich, Switzerland mathieu.legros@env.ethz.ch. ORCID
  2. Sebastian Bonhoeffer: ETH Zürich, Institut für Integrative Biologie, 8092 Zürich, Switzerland. ORCID

Abstract

The spread of drug resistance represents a significant challenge to many disease control efforts. The evolution of resistance is a complex process influenced by transmission dynamics between hosts as well as infection dynamics within these hosts. This study aims to investigate how these two processes combine to impact the evolution of resistance in malaria parasites. We introduce a stochastic modelling framework combining an epidemiological model of Plasmodium transmission and an explicit within-human infection model for two competing strains. Immunity, treatment and resistance costs are included in the within-host model. We show that the spread of resistance is generally less likely in areas of intense transmission, and therefore of increased competition between strains, an effect exacerbated when costs of resistance are higher. We also illustrate how treatment influences the spread of resistance, with a trade-off between slowing resistance and curbing disease incidence. We show that treatment coverage has a stronger impact on disease prevalence, whereas treatment efficacy primarily affects resistance spread, suggesting that coverage should constitute the primary focus of control efforts. Finally, we illustrate the importance of feedbacks between modelling scales. Overall, our results underline the importance of concomitantly modelling the evolution of resistance within and between hosts.

Keywords

References

  1. N Engl J Med. 2009 Jul 30;361(5):455-67 [PMID: 19641202]
  2. Parasitology. 2000 Sep;121 ( Pt 3):227-35 [PMID: 11085243]
  3. Trends Parasitol. 2001 Feb;17(2):102-6 [PMID: 11227997]
  4. Malar J. 2014;13:268 [PMID: 25011942]
  5. Malar J. 2010;9:217 [PMID: 20653960]
  6. Malar J. 2004 Sep 14;3:33 [PMID: 15367331]
  7. Trans R Soc Trop Med Hyg. 2014 Apr;108(4):185-97 [PMID: 24591453]
  8. J R Soc Interface. 2007 Oct 22;4(16):803-17 [PMID: 17264055]
  9. J R Soc Interface. 2013 Apr 6;10(81):20120921 [PMID: 23407571]
  10. Mol Microbiol. 2005 Feb;55(4):1285-95 [PMID: 15686571]
  11. Trends Ecol Evol. 2013 Oct;28(10):578-83 [PMID: 23827437]
  12. Trans R Soc Trop Med Hyg. 1998 Mar-Apr;92(2):188-95 [PMID: 9764331]
  13. Parasitol Today. 2000 Aug;16(8):340-7 [PMID: 10900482]
  14. Elife. 2013;2:e00626 [PMID: 23705071]
  15. Lancet Infect Dis. 2011 Mar;11(3):236-47 [PMID: 21371657]
  16. J R Soc Interface. 2007 Oct 22;4(16):787-802 [PMID: 17426010]
  17. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):985-9 [PMID: 8577773]
  18. Trends Microbiol. 2001 Sep;9(9):438-44 [PMID: 11553456]
  19. J Anim Ecol. 2011 Jan;80(1):19-38 [PMID: 20735792]
  20. Evol Appl. 2009 Feb;2(1):40-51 [PMID: 25567846]
  21. Lancet. 2014 Feb 22;383(9918):723-35 [PMID: 23953767]
  22. Parasitology. 1989;99 Suppl:S59-79 [PMID: 2682486]
  23. Proc Biol Sci. 1993 Jul 22;253(1336):9-13 [PMID: 8396781]
  24. Parasitology. 1997 Aug;115 ( Pt 2):133-41 [PMID: 10190169]
  25. Parasitology. 2001 Apr;122(Pt 4):379-91 [PMID: 11315171]
  26. Proc Biol Sci. 1997 Jan 22;264(1378):61-7 [PMID: 9061961]
  27. Int J Antimicrob Agents. 2013 Apr;41(4):311-7 [PMID: 23394809]
  28. Proc Biol Sci. 1992 Dec 22;250(1329):249-56 [PMID: 1362993]
  29. Parasitology. 2006 May;132(Pt 5):615-24 [PMID: 16426485]
  30. J Med Entomol. 2014 Mar;51(2):297-313 [PMID: 24724278]
  31. Clin Microbiol Rev. 2004 Jan;17(1):235-54 [PMID: 14726463]
  32. Science. 1994 Sep 2;265(5177):1451-4 [PMID: 8073289]
  33. Trends Parasitol. 2013 Jun;29(6):270-5 [PMID: 23597499]
  34. Lancet. 2012 May 26;379(9830):1960-6 [PMID: 22484134]
  35. Proc Natl Acad Sci U S A. 2011 Jun 28;108 Suppl 2:10871-7 [PMID: 21690376]
  36. Am Nat. 2005 Nov;166(5):531-42 [PMID: 16224719]
  37. Trends Ecol Evol. 2008 Sep;23(9):511-7 [PMID: 18657880]
  38. Malar J. 2011;10:202 [PMID: 21777413]
  39. Acta Trop. 1991 Apr;49(1):1-25 [PMID: 1678572]
  40. Science. 2001 May 11;292(5519):1099-102 [PMID: 11352063]
  41. Parassitologia. 1999 Sep;41(1-3):221-31 [PMID: 10697860]
  42. Lancet Infect Dis. 2002 Apr;2(4):209-18 [PMID: 11937421]
  43. Acta Trop. 2005 Jun;94(3):207-17 [PMID: 15894181]
  44. J Theor Biol. 1997 Sep 7;188(1):127-40 [PMID: 9299316]

MeSH Term

Animals
Antimalarials
Host-Pathogen Interactions
Humans
Malaria
Models, Biological
Plasmodium

Chemicals

Antimalarials

Word Cloud

Created with Highcharts 10.0.0resistancespreadevolutionmodellingmodeltreatmentdiseasetransmissionhostsdrugcontroleffortsdynamicsinfectionwithintwoimpactmalariastochasticframeworkPlasmodiumstrainscostswithin-hostshowillustratecoverageimportancerepresentssignificantchallengemanycomplexprocessinfluencedwellstudyaimsinvestigateprocessescombineparasitesintroducecombiningepidemiologicalexplicitwithin-humancompetingImmunityincludedgenerallylesslikelyareasintensethereforeincreasedcompetitioneffectexacerbatedhigheralsoinfluencestrade-offslowingcurbingincidencestrongerprevalencewhereasefficacyprimarilyaffectssuggestingconstituteprimaryfocusFinallyfeedbacksscalesOverallresultsunderlineconcomitantlycombinedbetween-hostsantimalarialdrugsfalciparumcost

Similar Articles

Cited By (19)