Intrinsic Cornu Ammonis Area 1 Theta-Nested Gamma Oscillations Induced by Optogenetic Theta Frequency Stimulation.

James L Butler, Philipe R F Mendonça, Hugh P C Robinson, Ole Paulsen
Author Information
  1. James L Butler: Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Cambridge CB2 3EG, United Kingdom.
  2. Philipe R F Mendonça: Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Cambridge CB2 3EG, United Kingdom.
  3. Hugh P C Robinson: Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Cambridge CB2 3EG, United Kingdom.
  4. Ole Paulsen: Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Cambridge CB2 3EG, United Kingdom op210@cam.ac.uk. ORCID

Abstract

Gamma oscillations (30-120 Hz) are thought to be important for various cognitive functions, including perception and working memory, and disruption of these oscillations has been implicated in brain disorders, such as schizophrenia and Alzheimer's disease. The cornu ammonis area 1 (CA1) of the hippocampus receives gamma frequency inputs from upstream regions (cornu ammonis area 3 and medial entorhinal cortex) and generates itself a faster gamma oscillation. The exact nature and origin of the intrinsic CA1 gamma oscillation is still under debate. Here, we expressed channel rhodopsin-2 under the CaMKIIα promoter in mice and prepared hippocampal slices to produce a model of intrinsic CA1 gamma oscillations. Sinusoidal optical stimulation of CA1 at theta frequency was found to induce robust theta-nested gamma oscillations with a temporal and spatial profile similar to CA1 gamma in vivo The results suggest the presence of a single gamma rhythm generator with a frequency range of 65-75 Hz at 32 °C. Pharmacological analysis found that the oscillations depended on both AMPA and GABAA receptors. Cell-attached and whole-cell recordings revealed that excitatory neuron firing slightly preceded interneuron firing within each gamma cycle, suggesting that this intrinsic CA1 gamma oscillation is generated with a pyramidal-interneuron circuit mechanism.
SIGNIFICANCE STATEMENT: This study demonstrates that the cornu ammonis area 1 (CA1) is capable of generating intrinsic gamma oscillations in response to theta input. This gamma generator is independent of activity in the upstream regions, highlighting that CA1 can produce its own gamma oscillation in addition to inheriting activity from the upstream regions. This supports the theory that gamma oscillations predominantly function to achieve local synchrony, and that a local gamma generated in each area conducts the signal to the downstream region.

Keywords

References

  1. J Neurosci. 2013 Jul 24;33(30):12337-51 [PMID: 23884940]
  2. Nat Rev Neurosci. 2007 Jan;8(1):45-56 [PMID: 17180162]
  3. Neuron. 2010 Nov 4;68(3):557-69 [PMID: 21040854]
  4. J Physiol. 2014 Feb 15;592(4):605-20 [PMID: 24277864]
  5. Trends Cogn Sci. 2005 Oct;9(10):474-80 [PMID: 16150631]
  6. Annu Rev Neurosci. 2012;35:203-25 [PMID: 22443509]
  7. Nature. 1995 Feb 16;373(6515):612-5 [PMID: 7854418]
  8. Brain Res. 1983 Oct;287(2):139-71 [PMID: 6357356]
  9. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11047-52 [PMID: 12960382]
  10. J Physiol. 2010 Mar 1;588(Pt 5):785-97 [PMID: 20051494]
  11. Brain Res. 1998 Jun 15;796(1-2):327-31 [PMID: 9689489]
  12. Nat Protoc. 2014 Jan;9(1):193-208 [PMID: 24385149]
  13. J Physiol. 2002 Jul 1;542(Pt 1):167-79 [PMID: 12096059]
  14. J Neurosci. 1995 Jan;15(1 Pt 1):47-60 [PMID: 7823151]
  15. Nature. 2009 Nov 19;462(7271):353-7 [PMID: 19924214]
  16. Neuron. 2014 Oct 22;84(2):470-85 [PMID: 25263753]
  17. J Comp Physiol Psychol. 1975 Jan;88(1):324-8 [PMID: 1120805]
  18. Nature. 1998 Jul 9;394(6689):186-9 [PMID: 9671302]
  19. J Neurosci. 2015 Feb 25;35(8):3616-24 [PMID: 25716860]
  20. Nat Biotechnol. 2010 Apr;28(4):348-53 [PMID: 20231818]
  21. Nat Neurosci. 2012 May;15(5):763-8 [PMID: 22466505]
  22. Eur J Neurosci. 2009 Jan;29(2):319-27 [PMID: 19200237]
  23. J Neurosci. 2008 Feb 27;28(9):2274-86 [PMID: 18305260]
  24. Neuron. 2003 Jan 23;37(2):311-22 [PMID: 12546825]
  25. Nat Rev Neurosci. 2010 Feb;11(2):100-13 [PMID: 20087360]
  26. Neuron. 1995 Jan;14(1):185-9 [PMID: 7826635]
  27. J Neurosci. 2012 Jan 11;32(2):423-35 [PMID: 22238079]
  28. Neuron. 2013 Dec 4;80(5):1263-76 [PMID: 24314731]
  29. Curr Opin Neurobiol. 2015 Apr;31:40-4 [PMID: 25137641]
  30. Aging Dis. 2013 Jan 23;4(3):134-40 [PMID: 23730529]
  31. J Neurosci. 2012 May 23;32(21):7373-83 [PMID: 22623683]
  32. Neuron. 2013 Jan 9;77(1):141-54 [PMID: 23312522]
  33. PLoS One. 2011;6(6):e21408 [PMID: 21731735]
  34. Int J Psychophysiol. 2000 Dec 1;38(3):315-36 [PMID: 11102670]
  35. Neuron. 2014 Mar 5;81(5):1126-39 [PMID: 24607232]

Grants

  1. BB/D015758/1/Biotechnology and Biological Sciences Research Council

MeSH Term

Animals
CA1 Region, Hippocampal
Calcium-Calmodulin-Dependent Protein Kinase Type 2
Channelrhodopsins
Entorhinal Cortex
Excitatory Amino Acid Agonists
Gamma Rhythm
In Vitro Techniques
Mice
Mice, Inbred C57BL
Mice, Knockout
Nerve Net
Neurons
Optogenetics
Photic Stimulation
Promoter Regions, Genetic
Theta Rhythm

Chemicals

Channelrhodopsins
Excitatory Amino Acid Agonists
Calcium-Calmodulin-Dependent Protein Kinase Type 2

Word Cloud

Created with Highcharts 10.0.0gammaCA1oscillationsoscillationareaintrinsiccornuammonis1frequencyupstreamregionsGammaHzhippocampusproducethetafoundgeneratorfiringinterneurongeneratedcircuitactivitylocal30-120thoughtimportantvariouscognitivefunctionsincludingperceptionworkingmemorydisruptionimplicatedbraindisordersschizophreniaAlzheimer'sdiseasereceivesinputs3medialentorhinalcortexgeneratesfasterexactnatureoriginstilldebateexpressedchannelrhodopsin-2CaMKIIαpromotermicepreparedhippocampalslicesmodelSinusoidalopticalstimulationinducerobusttheta-nestedtemporalspatialprofilesimilarvivoresultssuggestpresencesinglerhythmrange65-7532°CPharmacologicalanalysisdependedAMPAGABAAreceptorsCell-attachedwhole-cellrecordingsrevealedexcitatoryneuronslightlyprecededwithincyclesuggestingpyramidal-interneuronmechanismSIGNIFICANCESTATEMENT:studydemonstratescapablegeneratingresponseinputindependenthighlightingcanadditioninheritingsupportstheorypredominantlyfunctionachievesynchronyconductssignaldownstreamregionIntrinsicCornuAmmonisAreaTheta-NestedOscillationsInducedOptogeneticThetaFrequencyStimulationmousenetwork

Similar Articles

Cited By