The dynamics of carbon stored in xylem sapwood to drought-induced hydraulic stress in mature trees.

Kenichi Yoshimura, Shin-Taro Saiki, Kenichi Yazaki, Mayumi Y Ogasa, Makoto Shirai, Takashi Nakano, Jin Yoshimura, Atsushi Ishida
Author Information
  1. Kenichi Yoshimura: Kansai Research Center, Forestry and Forest Products Research Institute, Fushimi, Kyoto 612-0855, Japan.
  2. Shin-Taro Saiki: for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan.
  3. Kenichi Yazaki: Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan.
  4. Mayumi Y Ogasa: Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan.
  5. Makoto Shirai: Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
  6. Takashi Nakano: Mount Fuji Research Institute, Yamanashi Prefectural Government. Fuji-Yoshida, Yamanashi 403-0005, Japan.
  7. Jin Yoshimura: Department of Mathematical and Systems Engineering, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan.
  8. Atsushi Ishida: for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan.

Abstract

Climate-induced forest die-off is widespread in multiple biomes, strongly affecting the species composition, function and primary production in forest ecosystems. Hydraulic failure and carbon starvation in xylem sapwood are major hypotheses to explain drought-induced tree mortality. Because it is difficult to obtain enough field observations on drought-induced mortality in adult trees, the current understanding of the physiological mechanisms for tree die-offs is still controversial. However, the simultaneous examination of water and carbon uses throughout dehydration and rehydration processes in adult trees will contribute to clarify the roles of hydraulic failure and carbon starvation in tree wilting. Here we show the processes of the percent loss of hydraulic conductivity (PLC) and the content of nonstructural carbohydrates (NSCs) of distal branches in woody plants with contrasting water use strategy. Starch was converted to soluble sugar during PLC progression under drought, and the hydraulic conductivity recovered following water supply. The conversion of NSCs is strongly associated with PLC variations during dehydration and rehydration processes, indicating that stored carbon contributes to tree survival under drought; further carbon starvation can advance hydraulic failure. We predict that even slow-progressing drought degrades forest ecosystems via carbon starvation, causing more frequent catastrophic forest die-offs than the present projection.

References

  1. Plant Cell Environ. 2014 Jan;37(1):153-61 [PMID: 23730972]
  2. Plant Cell Environ. 2011 Mar;34(3):514-24 [PMID: 21118423]
  3. Oecologia. 2008 May;156(1):193-202 [PMID: 18297313]
  4. Tree Physiol. 2013 Apr;33(4):331-4 [PMID: 23612243]
  5. New Phytol. 2014 Aug;203(3):842-50 [PMID: 24860955]
  6. New Phytol. 2013 Oct;200(2):322-329 [PMID: 23593942]
  7. Ann Bot. 2009 Feb;103(4):581-97 [PMID: 18552366]
  8. Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):233-7 [PMID: 22167807]
  9. Plant Cell Environ. 2015 Aug;38(8):1503-13 [PMID: 25495925]
  10. New Phytol. 2010 Apr;186(2):274-81 [PMID: 20409184]
  11. Tree Physiol. 2013 Apr;33(4):335-44 [PMID: 23492871]
  12. New Phytol. 2008;178(4):719-739 [PMID: 18422905]
  13. New Phytol. 2011 Jul;191(1):15-18 [PMID: 21631506]
  14. Plant Physiol. 2011 Mar;155(3):1051-9 [PMID: 21239620]
  15. Nature. 2015 Dec 3;528(7580):119-22 [PMID: 26595275]
  16. New Phytol. 2013 Feb;197(3):862-872 [PMID: 23228042]
  17. Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):E68; author reply e69 [PMID: 19506239]
  18. Tree Physiol. 2002 Dec;22(17):1265-70 [PMID: 12464580]
  19. New Phytol. 2013 Oct;200(2):298-300 [PMID: 24050631]
  20. New Phytol. 1996 Jan;132(1):47-56 [PMID: 33863062]
  21. New Phytol. 2013 Jan;197(2):372-374 [PMID: 23253331]
  22. Plant Cell Environ. 2010 Aug 1;33(8):1285-97 [PMID: 20302602]
  23. Glob Chang Biol. 2015 Jan;21(1):314-34 [PMID: 24953341]
  24. Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7063-6 [PMID: 19365070]
  25. Tree Physiol. 2010 May;30(5):597-607 [PMID: 20368340]
  26. Trends Plant Sci. 2009 Oct;14(10):530-4 [PMID: 19726217]
  27. Am J Bot. 2002 May;89(5):820-8 [PMID: 21665682]
  28. Plant Sci. 2011 Apr;180(4):604-11 [PMID: 21421408]
  29. Tree Physiol. 2014 Oct;34(10):1056-68 [PMID: 25391689]
  30. Plant Cell Environ. 2008 Jul;31(7):915-24 [PMID: 18315535]

MeSH Term

Carbon
Droughts
Stress, Physiological
Trees
Xylem

Chemicals

Carbon

Word Cloud

Created with Highcharts 10.0.0carbonhydraulicforeststarvationtreefailuredrought-inducedtreeswaterprocessesPLCdroughtstronglyecosystemsxylemsapwoodmortalityadultdie-offsdehydrationrehydrationconductivityNSCsstoredClimate-induceddie-offwidespreadmultiplebiomesaffectingspeciescompositionfunctionprimaryproductionHydraulicmajorhypothesesexplaindifficultobtainenoughfieldobservationscurrentunderstandingphysiologicalmechanismsstillcontroversialHoweversimultaneousexaminationusesthroughoutwillcontributeclarifyroleswiltingshowpercentlosscontentnonstructuralcarbohydratesdistalbrancheswoodyplantscontrastingusestrategyStarchconvertedsolublesugarprogressionrecoveredfollowingsupplyconversionassociatedvariationsindicatingcontributessurvivalcanadvancepredictevenslow-progressingdegradesviacausingfrequentcatastrophicpresentprojectiondynamicsstressmature

Similar Articles

Cited By