Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware.

James C Knight, Philip J Tully, Bernhard A Kaplan, Anders Lansner, Steve B Furber
Author Information
  1. James C Knight: Advanced Processor Technologies Group, School of Computer Science, University of Manchester Manchester, UK.
  2. Philip J Tully: Department of Computational Biology, Royal Institute of TechnologyStockholm, Sweden; Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden; Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, UK.
  3. Bernhard A Kaplan: Department of Visualization and Data Analysis, Zuse Institute Berlin Berlin, Germany.
  4. Anders Lansner: Department of Computational Biology, Royal Institute of TechnologyStockholm, Sweden; Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden; Department of Numerical analysis and Computer Science, Stockholm UniversityStockholm, Sweden.
  5. Steve B Furber: Advanced Processor Technologies Group, School of Computer Science, University of Manchester Manchester, UK.

Abstract

SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Rather than using bespoke analog or digital hardware, the basic computational unit of a SpiNNaker system is a general-purpose ARM processor, allowing it to be programmed to simulate a wide variety of neuron and synapse models. This flexibility is particularly valuable in the study of biological plasticity phenomena. A recently proposed learning rule based on the Bayesian Confidence Propagation Neural Network (BCPNN) paradigm offers a generic framework for modeling the interaction of different plasticity mechanisms using spiking neurons. However, it can be computationally expensive to simulate large networks with BCPNN learning since it requires multiple state variables for each synapse, each of which needs to be updated every simulation time-step. We discuss the trade-offs in efficiency and accuracy involved in developing an event-based BCPNN implementation for SpiNNaker based on an analytical solution to the BCPNN equations, and detail the steps taken to fit this within the limited computational and memory resources of the SpiNNaker architecture. We demonstrate this learning rule by learning temporal sequences of neural activity within a recurrent attractor network which we simulate at scales of up to 2.0 × 104 neurons and 5.1 × 107 plastic synapses: the largest plastic neural network ever to be simulated on neuromorphic hardware. We also run a comparable simulation on a Cray XC-30 supercomputer system and find that, if it is to match the run-time of our SpiNNaker simulation, the super computer system uses approximately 45× more power. This suggests that cheaper, more power efficient neuromorphic systems are becoming useful discovery tools in the study of plasticity in large-scale brain models.

Keywords

References

  1. Front Synaptic Neurosci. 2014 Apr 08;6:8 [PMID: 24782758]
  2. J Comput Neurosci. 2001 Jan-Feb;10(1):25-45 [PMID: 11316338]
  3. Annu Rev Neurosci. 2004;27:419-51 [PMID: 15217339]
  4. Annu Rev Neurosci. 2008;31:25-46 [PMID: 18275283]
  5. Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):347-52 [PMID: 17185420]
  6. Front Comput Neurosci. 2011 Feb 14;4:160 [PMID: 21415913]
  7. Neural Comput. 2005 Aug;17(8):1776-801 [PMID: 15969917]
  8. Front Neurosci. 2013 Feb 18;7:11 [PMID: 23423583]
  9. Front Behav Neurosci. 2012 Oct 02;6:65 [PMID: 23060764]
  10. Exp Gerontol. 2003 Jan-Feb;38(1-2):95-9 [PMID: 12543266]
  11. J Neurosci. 2011 Mar 16;31(11):4101-12 [PMID: 21411651]
  12. Front Neurosci. 2012 Feb 06;6:17 [PMID: 22347163]
  13. Neural Comput. 2001 Dec;13(12):2709-41 [PMID: 11705408]
  14. Front Comput Neurosci. 2013 Sep 17;7:112 [PMID: 24062680]
  15. Nat Neurosci. 2013 Sep;16(9):1340-7 [PMID: 23912947]
  16. Network. 2006 Sep;17(3):253-76 [PMID: 17162614]
  17. Brain Res. 1977 Feb 25;122(3):393-413 [PMID: 402978]
  18. PLoS Comput Biol. 2009 Aug;5(8):e1000456 [PMID: 19662159]
  19. J Neurosci Methods. 2012 Sep 15;210(1):110-8 [PMID: 22465805]
  20. PLoS One. 2014 Oct 10;9(10):e108590 [PMID: 25303102]
  21. Front Neural Circuits. 2014 Feb 07;8:5 [PMID: 24570657]
  22. Front Synaptic Neurosci. 2011 Aug 29;3:4 [PMID: 22007168]
  23. Cereb Cortex. 2007 Oct;17(10):2443-52 [PMID: 17220510]
  24. Nat Rev Neurosci. 2008 Mar;9(3):206-21 [PMID: 18270515]
  25. Nat Rev Neurosci. 2015 Dec;16(12 ):745-55 [PMID: 26507295]
  26. Front Neurosci. 2015 Jan 22;9:2 [PMID: 25657618]
  27. Cereb Cortex. 2003 Nov;13(11):1124-38 [PMID: 14576205]
  28. Neuron. 2014 Jun 18;82(6):1394-406 [PMID: 24945778]
  29. Neuron. 2009 Aug 27;63(4):544-57 [PMID: 19709635]
  30. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8616-20 [PMID: 7567985]
  31. Brain. 2002 May;125(Pt 5):935-51 [PMID: 11960884]
  32. Front Synaptic Neurosci. 2010 Oct 04;2:140 [PMID: 21423526]
  33. Front Comput Neurosci. 2011 Jun 29;5:30 [PMID: 21852971]
  34. Neuron. 2012 Nov 21;76(4):695-711 [PMID: 23177956]
  35. J Neurosci. 2012 Apr 4;32(14):4913-22 [PMID: 22492047]
  36. J Neurophysiol. 2005 Nov;94(5):3637-42 [PMID: 16014787]
  37. Front Neurosci. 2014 May 30;8:131 [PMID: 24910593]
  38. PLoS One. 2009 Aug 07;4(8):e6549 [PMID: 19662093]
  39. Nature. 2008 Mar 27;452(7186):478-82 [PMID: 18368118]
  40. Cereb Cortex. 1996 May-Jun;6(3):406-16 [PMID: 8670667]
  41. Int J Neural Syst. 1996 May;7(2):115-28 [PMID: 8823623]
  42. Nat Neurosci. 2005 Jul;8(7):839-41 [PMID: 16136666]
  43. Nat Neurosci. 2013 Jul;16(7):925-33 [PMID: 23708144]
  44. Annu Rev Neurosci. 2010;33:89-108 [PMID: 20367317]
  45. Front Neurosci. 2015 Jun 08;9:206 [PMID: 26106288]
  46. Nature. 2003 May 15;423(6937):283-8 [PMID: 12748641]
  47. J Neurosci. 1997 Mar 15;17(6):2112-27 [PMID: 9045738]
  48. J Neurosci. 2010 Apr 28;30(17):5894-911 [PMID: 20427650]
  49. Network. 2002 May;13(2):179-94 [PMID: 12061419]
  50. Front Neurosci. 2015 Jan 20;8:429 [PMID: 25653580]
  51. Learn Mem. 2003 Nov-Dec;10(6):456-65 [PMID: 14657257]
  52. Nat Neurosci. 2012 Jan 22;15(3):449-55, S1-2 [PMID: 22267160]
  53. Neuron. 2012 Aug 23;75(4):556-71 [PMID: 22920249]
  54. Neural Comput. 2005 Feb;17(2):245-319 [PMID: 15720770]
  55. Neuron. 2004 Sep 30;44(1):23-30 [PMID: 15450157]
  56. PLoS Comput Biol. 2010 Nov 04;6(11):e1000961 [PMID: 21079671]
  57. Trends Cogn Sci. 2007 Jul;11(7):280-9 [PMID: 17548232]
  58. Nature. 1999 Mar 25;398(6725):334-8 [PMID: 10192333]
  59. Front Comput Neurosci. 2011 May 03;5:13 [PMID: 21625630]
  60. Science. 2014 Sep 26;345(6204):1616-20 [PMID: 25258080]
  61. Front Comput Neurosci. 2010 Nov 23;4:141 [PMID: 21151370]
  62. Neural Netw. 2007 Jan;20(1):48-61 [PMID: 16860539]
  63. PLoS Comput Biol. 2009 Oct;5(10):e1000532 [PMID: 19816557]
  64. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18772-7 [PMID: 18000059]
  65. Nat Rev Neurosci. 2012 Feb 08;13(3):194-208 [PMID: 22314444]
  66. J Neurosci. 1996 Jan 15;16(2):752-68 [PMID: 8551358]
  67. Science. 2004 Apr 23;304(5670):559-64 [PMID: 15105494]
  68. Nat Neurosci. 1999 Nov;2(11):1019-25 [PMID: 10526343]
  69. Science. 2015 Jul 3;349(6243):70-4 [PMID: 26138975]
  70. Trends Cogn Sci. 2008 Sep;12(9):327-33 [PMID: 18684660]
  71. J Comp Neurol. 1989 Nov 1;289(1):178-81 [PMID: 2808760]
  72. Front Neuroinform. 2012 Jan 24;5:35 [PMID: 22291636]
  73. J Neurosci. 2012 Jun 13;32(24):8424-8 [PMID: 22699922]
  74. J Neurosci. 1989 Jul;9(7):2432-42 [PMID: 2746337]
  75. Nat Neurosci. 2014 May;17 (5):732-7 [PMID: 24657967]
  76. Nature. 2005 Jul 7;436(7047):71-7 [PMID: 16001064]
  77. J Neurophysiol. 2003 Sep;90(3):1598-612 [PMID: 12750422]
  78. Nature. 2014 Jun 12;510(7504):263-7 [PMID: 24805237]
  79. Network. 2001 Aug;12(3):241-53 [PMID: 11563528]
  80. Neural Comput. 2015 Oct;27(10):2148-82 [PMID: 26313605]
  81. Nat Neurosci. 1999 Jan;2(1):79-87 [PMID: 10195184]
  82. Science. 2014 Aug 8;345(6197):668-73 [PMID: 25104385]
  83. Nature. 2005 Feb 24;433(7028):868-73 [PMID: 15729343]
  84. Front Comput Neurosci. 2014 Jul 01;8:64 [PMID: 25071536]
  85. Front Hum Neurosci. 2010 Mar 22;4:25 [PMID: 20631856]
  86. Brain. 1997 Apr;120 ( Pt 4):701-22 [PMID: 9153131]
  87. J Neurosci. 1986 Dec;6(12):3749-66 [PMID: 2432205]
  88. J Neurosci. 2003 May 1;23(9):3697-714 [PMID: 12736341]
  89. J Neurosci. 1998 Dec 15;18(24):10464-72 [PMID: 9852584]
  90. Nat Neurosci. 2012 Nov;15(11):1498-505 [PMID: 23001062]
  91. Brain Res. 2012 Jan 24;1434:152-61 [PMID: 21907326]
  92. PLoS Comput Biol. 2010 Jun 03;6(6):e1000803 [PMID: 20532199]
  93. Neural Comput. 2007 Jun;19(6):1437-67 [PMID: 17444756]
  94. Front Neuroanat. 2014 Aug 12;8:78 [PMID: 25161611]

Word Cloud

Created with Highcharts 10.0.0SpiNNakerlearningBCPNNneuromorphicneuralplasticitysimulationdigitalhardwaresystemsimulatenetworkarchitecturelarge-scalespikingnetworksbiologicalusingcomputationalsynapsemodelsstudyrulebasedBayesianNeuralneuronsaccuracywithin×plasticpowerdesignedsimulatingspeedsclosereal-timeRatherbespokeanalogbasicunitgeneral-purposeARMprocessorallowingprogrammedwidevarietyneuronflexibilityparticularlyvaluablephenomenarecentlyproposedConfidencePropagationNetworkparadigmoffersgenericframeworkmodelinginteractiondifferentmechanismsHowevercancomputationallyexpensivelargesincerequiresmultiplestatevariablesneedsupdatedeverytime-stepdiscusstrade-offsefficiencyinvolveddevelopingevent-basedimplementationanalyticalsolutionequationsdetailstepstakenfitlimitedmemoryresourcesdemonstratetemporalsequencesactivityrecurrentattractorscales2010451107synapses:largesteversimulatedalsoruncomparableCrayXC-30supercomputerfindmatchrun-timesupercomputerusesapproximately45×suggestscheaperefficientsystemsbecomingusefuldiscoverytoolsbrainLarge-ScaleSimulationsPlasticNetworksNeuromorphicHardwareconfidencepropagationevent-drivenfixed-point

Similar Articles

Cited By