A Brain System for Auditory Working Memory.

Sukhbinder Kumar, Sabine Joseph, Phillip E Gander, Nicolas Barascud, Andrea R Halpern, Timothy D Griffiths
Author Information
  1. Sukhbinder Kumar: Auditory Group, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom, Wellcome Trust Centre for Neuroimaging, London WC1N 3BG, United Kingdom, sukhbinder.kumar@ncl.ac.uk.
  2. Sabine Joseph: Institute of Cognitive Neuroscience, London, United Kingdom, Institute of Neurology, UCL Neuroscience, London WC1N 3AR, United Kingdom.
  3. Phillip E Gander: Human Brain Research Laboratory, Department of Neurosurgery, The University of Iowa, Iowa City, Iowa 52242.
  4. Nicolas Barascud: UCL Ear Institute, London WC1X 8EE, United Kingdom, and. ORCID
  5. Andrea R Halpern: Department of Psychology, Bucknell University, Lewisburg, Pennsylvania 17837.
  6. Timothy D Griffiths: Auditory Group, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom, Wellcome Trust Centre for Neuroimaging, London WC1N 3BG, United Kingdom.

Abstract

The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex.
SIGNIFICANCE STATEMENT: In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance.

Keywords

References

  1. Front Neuroanat. 2010 Oct 08;4:129 [PMID: 20976037]
  2. Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12961-6 [PMID: 21768383]
  3. Brain Res. 2008 May 30;1212:48-54 [PMID: 18442810]
  4. Cogn Affect Behav Neurosci. 2004 Dec;4(4):580-99 [PMID: 15849899]
  5. Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3228-33 [PMID: 20133762]
  6. Trends Cogn Sci. 2014 Apr;18(4):177-85 [PMID: 24440116]
  7. Neuropsychologia. 2008 Sep;46(11):2668-82 [PMID: 18573510]
  8. Psychon Bull Rev. 2007 Dec;14(6):1072-8 [PMID: 18229477]
  9. Nat Rev Neurosci. 2006 Jul;7(7):523-34 [PMID: 16791142]
  10. Neuroimage. 2007 Aug 1;37(1):90-101 [PMID: 17560126]
  11. Cogn Affect Behav Neurosci. 2004 Mar;4(1):10-9 [PMID: 15259886]
  12. Eur J Neurosci. 2010 Jan;31(1):177-88 [PMID: 20092564]
  13. Science. 2012 Nov 23;338(6110):1097-100 [PMID: 23118014]
  14. Curr Opin Neurobiol. 2013 Apr;23(2):255-60 [PMID: 23206590]
  15. Annu Rev Psychol. 2015 Jan 3;66:115-42 [PMID: 25251486]
  16. J Neurosci. 2007 Jul 18;27(29):7807-16 [PMID: 17634374]
  17. Trends Cogn Sci. 2006 Sep;10(9):424-30 [PMID: 16899397]
  18. Science. 2007 Jan 19;315(5810):393-5 [PMID: 17234951]
  19. Hippocampus. 1998;8(4):313-22 [PMID: 9744418]
  20. Neuropsychologia. 2012 Nov;50(13):3107-21 [PMID: 22820344]
  21. Nat Rev Neurosci. 2002 Mar;3(3):201-15 [PMID: 11994752]
  22. Psychophysiology. 1999 Sep;36(5):610-8 [PMID: 10442029]
  23. Vision Res. 1999 Jan;39(1):71-86 [PMID: 10211397]
  24. Neuroimage. 2003 Jul;19(3):1233-9 [PMID: 12880848]
  25. J Exp Psychol Hum Percept Perform. 2013 Oct;39(5):1224-31 [PMID: 23244045]
  26. Anat Embryol (Berl). 2005 Dec;210(5-6):343-52 [PMID: 16208455]
  27. Neuroimage. 2001 Apr;13(4):684-701 [PMID: 11305897]
  28. Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2871-5 [PMID: 25730850]
  29. Proc Biol Sci. 2014 Sep 22;281(1791):20141000 [PMID: 25100695]
  30. Nat Rev Neurosci. 2009 Nov;10(11):792-802 [PMID: 19812579]
  31. Trends Cogn Sci. 2005 Aug;9(8):374-80 [PMID: 16002324]
  32. Cereb Cortex. 2015 Jul;25(7):1947-57 [PMID: 24488957]
  33. Neuroscience. 2006 Apr 28;139(1):23-38 [PMID: 16324795]
  34. Neurosci Biobehav Rev. 2012 Aug;36(7):1579-96 [PMID: 21964564]
  35. Percept Psychophys. 2007 Nov;69(8):1422-34 [PMID: 18078232]
  36. Nat Rev Neurosci. 2014 Oct;15(10):655-69 [PMID: 25234264]
  37. Neuroimage. 2013 Jan 15;65:69-82 [PMID: 23041526]
  38. Hum Brain Mapp. 2009 Mar;30(3):859-73 [PMID: 18330870]
  39. Learn Mem. 2012 Jan;19(1):15-25 [PMID: 22180053]
  40. Front Hum Neurosci. 2012 Jun 12;6:173 [PMID: 22701418]
  41. Trends Cogn Sci. 2013 May;17(5):230-40 [PMID: 23597720]
  42. Neuroimage. 1997 Aug;6(2):122-38 [PMID: 9299386]
  43. Brain. 2013 May;136(Pt 5):1639-61 [PMID: 23616587]
  44. Nature. 2009 Apr 2;458(7238):632-5 [PMID: 19225460]
  45. Psychol Sci. 2009 Feb;20(2):207-14 [PMID: 19170936]
  46. Neurosci Biobehav Rev. 2013 Dec;37(10 Pt 2):2608-20 [PMID: 23999082]
  47. Hippocampus. 2003;13(1):164-74 [PMID: 12625466]
  48. Neuropsychologia. 2010 Mar;48(4):831-53 [PMID: 20074580]
  49. Neuroimage. 2005 May 1;25(4):1325-35 [PMID: 15850749]
  50. J Neurosci. 2012 Sep 19;32(38):12990-8 [PMID: 22993416]
  51. Trends Neurosci. 2002 Jul;25(7):348-53 [PMID: 12079762]
  52. Neuron. 2001 Sep 13;31(5):865-73 [PMID: 11567623]
  53. Nature. 1993 Mar 25;362(6418):342-5 [PMID: 8455719]
  54. Cereb Cortex. 1999 Jun;9(4):392-405 [PMID: 10426418]
  55. Neuroimage. 2007 Nov 15;38(3):617-30 [PMID: 17888688]
  56. PLoS Biol. 2004 Nov;2(11):e365 [PMID: 15510225]
  57. Nat Rev Neurosci. 2005 Feb;6(2):97-107 [PMID: 15654324]
  58. Ann N Y Acad Sci. 2008 Mar;1124:1-38 [PMID: 18400922]
  59. Neuroimage. 2003 Aug;19(4):1417-26 [PMID: 12948699]
  60. J Cogn Neurosci. 2015 Jul;27(7):1322-33 [PMID: 25603030]
  61. Cortex. 2014 Mar;52:86-97 [PMID: 24445167]
  62. J Neurosci. 1994 Apr;14(4):1908-19 [PMID: 8158246]
  63. Brain Connect. 2012;2(3):125-41 [PMID: 22642651]
  64. Front Hum Neurosci. 2014 Sep 24;8:753 [PMID: 25309402]
  65. J Cogn Neurosci. 1998 Mar;10(2):167-77 [PMID: 9555105]
  66. Cereb Cortex. 2005 Oct;15(10):1621-31 [PMID: 15703256]
  67. Neuroimage. 2012 Aug 15;62(2):864-70 [PMID: 22245341]
  68. Neuroimage. 2004 Jun;22(2):688-97 [PMID: 15193597]

Grants

  1. /Wellcome Trust
  2. 091593/Wellcome Trust
  3. WT091681MA/Wellcome Trust

MeSH Term

Acoustic Stimulation
Adult
Auditory Cortex
Auditory Perception
Brain
Brain Mapping
Female
Hippocampus
Humans
Male
Memory, Short-Term
Middle Aged
Prefrontal Cortex

Word Cloud

Created with Highcharts 10.0.0cortexauditorymemoryworkinghippocampusfrontalmaintenanceinferiordemonstrategyrusactivityconnectivityworkmaintainingcontroversialfunctionaltonesactivationpatternmaintainedsystembasedrepresentationsshowbrainbasisprocessactivelysoundsshortperiodstimeUsingmagneticresonanceimaginghumanparticipantssingleassociatedadditionsustainedobservedMultivoxelanalysisshowedpatternsleftdistinguishedtoneFunctionaldemonstrateddatasupportsound-specificprojectionshigher-orderareasincludingSIGNIFICANCESTATEMENT:soundamongSpecificallymakesthreeadvancespreviousFirstrobustlyhippocampalinvolvementphasesencodingretrieval:roleSecondusingclassificationtechniquespecificThirdlong-rangemayresponsiblekeepingactiveBrainSystemAuditoryWorkingMemoryMVPAfMRI

Similar Articles

Cited By