Mutations in Cockayne Syndrome-Associated Genes (Csa and Csb) Predispose to Cisplatin-Induced Hearing Loss in Mice.

Robert N Rainey, Sum-Yan Ng, Juan Llamas, Gijsbertus T J van der Horst, Neil Segil
Author Information
  1. Robert N Rainey: Department of Stem Cell Biology and Regenerative Medicine, and Caruso Department of Otolaryngology, University of Southern California, Eli and Edythe Broad Center, Los Angeles, California 90033, and. ORCID
  2. Sum-Yan Ng: Department of Stem Cell Biology and Regenerative Medicine, and Caruso Department of Otolaryngology, University of Southern California, Eli and Edythe Broad Center, Los Angeles, California 90033, and.
  3. Juan Llamas: Department of Stem Cell Biology and Regenerative Medicine, and Caruso Department of Otolaryngology, University of Southern California, Eli and Edythe Broad Center, Los Angeles, California 90033, and.
  4. Gijsbertus T J van der Horst: Department of Genetics, Cancer Genomic Center, Erasmus MC, Rotterdam 3015 CN, The Netherlands.
  5. Neil Segil: Department of Stem Cell Biology and Regenerative Medicine, and Caruso Department of Otolaryngology, University of Southern California, Eli and Edythe Broad Center, Los Angeles, California 90033, and nsegil@med.usc.edu.

Abstract

Cisplatin is a common and effective chemotherapeutic agent, yet it often causes permanent hearing loss as a result of sensory hair cell death. The causes of sensitivity to DNA-damaging agents in nondividing cell populations, such as cochlear hair and supporting cells, are poorly understood, as are the specific DNA repair pathways that protect these cells. Nucleotide excision repair (NER) is a conserved and versatile DNA repair pathway for many DNA-distorting lesions, including cisplatin-DNA adducts. Progressive sensorineural hearing loss is observed in a subset of NER-associated DNA repair disorders including Cockayne syndrome and some forms of xeroderma pigmentosum. We investigated whether either of the two overlapping branches that encompass NER, transcription-coupled repair or global genome repair, which are implicated in Cockayne syndrome and xeroderma pigmentosum group C, respectively, modulates cisplatin-induced hearing loss and cell death in the organ of Corti, the auditory sensory epithelium of mammals. We report that cochlear hair cells and supporting cells in transcription-coupled repair-deficient Cockayne syndrome group A (Csa(-/-)) and group B (Csb(-/-)) mice are hypersensitive to cisplatin, in contrast to global genome repair-deficient Xpc(-/-) mice, both in vitro and in vivo We show that sensory hair cells in Csa(-/-) and Csb(-/-) mice fail to remove cisplatin-DNA adducts efficiently in vitro; and unlike Xpc(-/-) mice, Csa(-/-) and Csb(-/-) mice lose hearing and manifest outer hair cell degeneration after systemic cisplatin treatment. Our results demonstrate that Csa and Csb deficiencies predispose to cisplatin-induced hearing loss and hair/supporting cell damage in the mammalian organ of Corti, and emphasize the importance of transcription-coupled DNA repair in the protection against cisplatin ototoxicity.
SIGNIFICANCE STATEMENT: The utility of cisplatin in chemotherapy remains limited due to serious side effects, including sensorineural hearing loss. We show that mouse models of Cockayne syndrome, a progeroid disorder resulting from a defect in the transcription-coupled DNA repair (TCR) branch of nucleotide excision repair, are hypersensitive to cisplatin-induced hearing loss and sensory hair cell death in the organ of Corti, the mammalian auditory sensory epithelium. Our work indicates that Csa and Csb, two genes involved in TCR, are preferentially required to protect against cisplatin ototoxicity, relative to global genome repair-specific elements of nucleotide excision repair, and suggests that TCR is a major force maintaining DNA integrity in the cochlea. The Cockayne syndrome mice thus represent a model for testing the contribution of DNA repair mechanisms to cisplatin ototoxicity.

Keywords

References

  1. Mol Cell Biol. 2007 Feb;27(4):1433-41 [PMID: 17145777]
  2. Neurology. 2011 Mar 29;76(13):1126-34 [PMID: 21346220]
  3. Curr Oncol. 2010 Jun;17(3):83-5 [PMID: 20567629]
  4. Cell Death Differ. 2015 Dec;22(12):1995-2005 [PMID: 25929858]
  5. Front Cell Neurosci. 2015 May 21;9:190 [PMID: 26052268]
  6. Mech Ageing Dev. 2013 May-Jun;134(5-6):275-83 [PMID: 23435289]
  7. J Natl Cancer Inst. 2009 Jan 7;101(1):37-47 [PMID: 19116379]
  8. Nat Struct Mol Biol. 2007 Dec;14(12):1127-33 [PMID: 17994106]
  9. Gene Expr Patterns. 2003 Aug;3(4):389-95 [PMID: 12915300]
  10. Hear Res. 2005 May;203(1-2):112-21 [PMID: 15855036]
  11. Br J Radiol. 2006 Jun;79(942):510-7 [PMID: 16714754]
  12. Exp Neurol. 2014 May;255:137-44 [PMID: 24594220]
  13. J Biol. 2006;5(7):22 [PMID: 17125495]
  14. Am J Med Genet. 1992 Jan 1;42(1):68-84 [PMID: 1308368]
  15. Anat Rec (Hoboken). 2012 Nov;295(11):1837-50 [PMID: 23045231]
  16. Cell Death Dis. 2014;5:e1505 [PMID: 25356874]
  17. Mech Ageing Dev. 2013 May-Jun;134(5-6):180-95 [PMID: 23591128]
  18. Mech Ageing Dev. 2014 Jan;135:1-14 [PMID: 24406253]
  19. Hear Res. 2008 May;239(1-2):79-91 [PMID: 18329831]
  20. Hear Res. 2000 Jun;144(1-2):147-56 [PMID: 10831873]
  21. Radiother Oncol. 2000 Nov;57(2):143-54 [PMID: 11054518]
  22. Mech Ageing Dev. 2008 Jul-Aug;129(7-8):441-8 [PMID: 18541289]
  23. Nat Rev Neurosci. 2006 Nov;7(11):837-49 [PMID: 17053809]
  24. Cancer Res. 1991 Jan 1;51(1):123-9 [PMID: 1703029]
  25. Otolaryngol Head Neck Surg. 2001 Oct;125(4):411-3 [PMID: 11593184]
  26. J Neurosci. 2015 Mar 11;35(10):4280-6 [PMID: 25762674]
  27. Int J Cancer. 2004 Jun 20;110(3):352-61 [PMID: 15095299]
  28. Nat Rev Mol Cell Biol. 2014 Jul;15(7):465-81 [PMID: 24954209]
  29. PLoS Genet. 2011 Dec;7(12):e1002405 [PMID: 22174697]
  30. Mol Pharmacol. 2006 Jul;70(1):23-9 [PMID: 16569706]
  31. Mech Ageing Dev. 2009 Sep;130(9):619-36 [PMID: 19647012]
  32. Neurosci Lett. 2002 Dec 16;334(3):173-6 [PMID: 12453623]
  33. Dev Cell. 2009 Jan;16(1):58-69 [PMID: 19154718]
  34. Hear Res. 2011 Oct;280(1-2):141-7 [PMID: 21645602]
  35. Am J Otolaryngol. 1986 Jul-Aug;7(4):276-93 [PMID: 3752388]
  36. Neuroscience. 2007 Apr 14;145(4):1213-21 [PMID: 16920273]
  37. Laryngoscope. 1983 Dec;93(12):1554-9 [PMID: 6685804]
  38. Cancer Res. 2000 Mar 15;60(6):1580-4 [PMID: 10749126]
  39. Cancer Res. 2002 Sep 1;62(17):4899-902 [PMID: 12208738]
  40. Protein Eng Des Sel. 2004 Jun;17(6):527-36 [PMID: 15314210]
  41. Mech Ageing Dev. 2012 Feb-Mar;133(2-3):59-67 [PMID: 22257940]
  42. Acta Neuropathol Commun. 2013;1:4 [PMID: 24252196]
  43. Pediatr Blood Cancer. 2012 Jun;58(6):953-8 [PMID: 21796767]
  44. Mutat Res. 1997 Mar 4;374(1):1-9 [PMID: 9067411]
  45. Cell. 1997 May 2;89(3):425-35 [PMID: 9150142]
  46. Hear Res. 2012 Jan;283(1-2):80-8 [PMID: 22138310]
  47. Cancer Res. 2000 Jun 1;60(11):2858-63 [PMID: 10850428]
  48. Brain. 2013 Jan;136(Pt 1):194-208 [PMID: 23365097]
  49. Mech Ageing Dev. 2013 May-Jun;134(5-6):234-42 [PMID: 23562425]
  50. Otolaryngol Head Neck Surg. 1998 Jun;118(6):825-32 [PMID: 9627244]
  51. DNA Repair (Amst). 2002 Feb 28;1(2):143-57 [PMID: 12509261]
  52. Hear Res. 1998 May;119(1-2):27-36 [PMID: 9641316]
  53. Mutat Res. 2001 Jul 1;478(1-2):23-43 [PMID: 11406167]
  54. Mech Ageing Dev. 2013 May-Jun;134(5-6):261-9 [PMID: 23562424]
  55. Neuroreport. 2005 Aug 1;16(11):1183-7 [PMID: 16012345]
  56. Nat Genet. 2003 Sep;35(1):21-3 [PMID: 12910270]
  57. DNA Repair (Amst). 2008 Jul 1;7(7):1180-9 [PMID: 18272436]
  58. Dev Dyn. 2014 Oct;243(10):1328-37 [PMID: 24888499]

Grants

  1. F32 DC010125/NIDCD NIH HHS
  2. R01 DC007173/NIDCD NIH HHS

MeSH Term

Animals
Cell Death
Cisplatin
Cochlea
Cockayne Syndrome
DNA Adducts
DNA Repair
DNA Repair Enzymes
Disease Models, Animal
Female
Hearing Loss
Humans
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
Mutation
Xeroderma Pigmentosum

Chemicals

DNA Adducts
cisplatin-DNA adduct
DNA Repair Enzymes
Cisplatin

Word Cloud

Created with Highcharts 10.0.0repairhearingDNA-/-losshairCockaynecisplatinsensorycellcellssyndromeCsaCsbmicetranscription-coupledototoxicitydeathexcisionincludingglobalgenomegroupcisplatin-inducedorganCortiTCRcausescochlearsupportingprotectNERcisplatin-DNAadductssensorineuralxerodermapigmentosumtwoauditoryepitheliumrepair-deficienthypersensitiveXpcvitroshowmammaliannucleotideCisplatincommoneffectivechemotherapeuticagentyetoftenpermanentresultsensitivityDNA-damagingagentsnondividingpopulationspoorlyunderstoodspecificpathwaysNucleotideconservedversatilepathwaymanyDNA-distortinglesionsProgressiveobservedsubsetNER-associateddisordersformsinvestigatedwhethereitheroverlappingbranchesencompassimplicatedCrespectivelymodulatesmammalsreportBcontrastvivofailremoveefficientlyunlikelosemanifestouterdegenerationsystemictreatmentresultsdemonstratedeficienciespredisposehair/supportingdamageemphasizeimportanceprotectionSIGNIFICANCESTATEMENT:utilitychemotherapyremainslimiteddueserioussideeffectsmousemodelsprogeroiddisorderresultingdefectbranchworkindicatesgenesinvolvedpreferentiallyrequiredrelativerepair-specificelementssuggestsmajorforcemaintainingintegritycochleathusrepresentmodeltestingcontributionmechanismsMutationsSyndrome-AssociatedGenesPredisposeCisplatin-InducedHearingLossMice

Similar Articles

Cited By