Three-way interaction among plants, bacteria, and coleopteran insects.

Beata Wielkopolan, Aleksandra Obrępalska-Stęplowska
Author Information
  1. Beata Wielkopolan: Department of Agrophages' Forecasting Methods and Agricultural Economic, Institute of Plant Protection, National Research Institute, Poznan, Poland.
  2. Aleksandra Obrępalska-Stęplowska: Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection, National Research Institute, Poznan, Poland. olaob@o2.pl.

Abstract

MAIN CONCLUSION: Coleoptera, the largest and the most diverse Insecta order, is characterized by multiple adaptations to plant feeding. Insect-associated microorganisms can be important mediators and modulators of interactions between insects and plants. Interactions between plants and insects are highly complex and involve multiple factors. There are various defense mechanisms initiated by plants upon attack by herbivorous insects, including the development of morphological structures and the synthesis of toxic secondary metabolites and volatiles. In turn, herbivores have adapted to feeding on plants and further sophisticated adaptations to overcome plant responses may continue to evolve. Herbivorous insects may detoxify toxic phytocompounds, sequester poisonous plant factors, and alter their own overall gene expression pattern. Moreover, insects are associated with microbes, which not only considerably affect insects, but can also modify plant defense responses to the benefit of their host. Plants are also frequently associated with endophytes, which may act as bioinsecticides. Therefore, it is very important to consider the factors influencing the interaction between plants and insects. Herbivorous insects cause considerable damage to global crop production. Coleoptera is the largest and the most diverse order in the class Insecta. In this review, various aspects of the interactions among insects, microbes, and plants are described with a focus on coleopteran species, their bacterial symbionts, and their plant hosts to demonstrate that many factors contribute to the success of coleopteran herbivory.

Keywords

References

  1. Plant Physiol. 2013 Jul;162(3):1324-36 [PMID: 23729780]
  2. Plant Cell Physiol. 2009 May;50(5):911-23 [PMID: 19246460]
  3. J Chem Ecol. 1995 Oct;21(10):1457-67 [PMID: 24233676]
  4. Proc Biol Sci. 2003 Dec 22;270(1533):2543-50 [PMID: 14728775]
  5. Insect Mol Biol. 2003 Apr;12(2):135-45 [PMID: 12653935]
  6. Trends Microbiol. 2010 May;18(5):189-94 [PMID: 20338765]
  7. J Econ Entomol. 1997 Apr;90(2):340-8 [PMID: 9145031]
  8. Annu Rev Phytopathol. 2011;49:317-43 [PMID: 21663438]
  9. Am Nat. 2002 Oct;160 Suppl 4:S99-S127 [PMID: 18707456]
  10. Arch Insect Biochem Physiol. 1999 Sep;42(1):99-109 [PMID: 10467060]
  11. Curr Opin Microbiol. 2012 Jun;15(3):220-31 [PMID: 22633889]
  12. Trends Ecol Evol. 2007 Jun;22(6):298-307 [PMID: 17324485]
  13. J Insect Physiol. 2009 Mar;55(3):185-91 [PMID: 19061893]
  14. Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15728-33 [PMID: 24019469]
  15. Annu Rev Plant Biol. 2004;55:315-40 [PMID: 15377223]
  16. Science. 2007 Dec 21;318(5858):1913-6 [PMID: 18096805]
  17. Annu Rev Entomol. 2002;47:57-92 [PMID: 11729069]
  18. Front Physiol. 2013 Mar 15;4:46 [PMID: 23508299]
  19. Insect Biochem Mol Biol. 2000 Dec;30(12):1181-8 [PMID: 11044664]
  20. Biol Rev Camb Philos Soc. 2010 May;85(2):267-80 [PMID: 19961475]
  21. J Chem Ecol. 2001 Mar;27(3):547-68 [PMID: 11441445]
  22. J Exp Bot. 2012 Jan;63(2):727-37 [PMID: 21994175]
  23. PLoS One. 2012;7(6):e38544 [PMID: 22685581]
  24. J Econ Entomol. 2000 Jun;93(3):892-6 [PMID: 10902346]
  25. Comp Biochem Physiol B Biochem Mol Biol. 2001 Feb;128(2):365-75 [PMID: 11207448]
  26. Proc Natl Acad Sci U S A. 2000 May 23;97(11):6218-23 [PMID: 10811915]
  27. Plant Signal Behav. 2006 Sep;1(5):243-50 [PMID: 19516985]
  28. Science. 2004 Jul 30;305(5684):665-8 [PMID: 15232071]
  29. Nature. 1995 Jan 5;373(6509):72-4 [PMID: 7800041]
  30. PLoS One. 2015 Mar 31;10(3):e0121343 [PMID: 25826251]
  31. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4169-74 [PMID: 7753779]
  32. FEBS Lett. 1993 Sep 27;331(1-2):173-6 [PMID: 8405400]
  33. Comp Biochem Physiol C Toxicol Pharmacol. 2005 Jan;140(1):53-8 [PMID: 15792623]
  34. BMC Evol Biol. 2009 Mar 24;9:64 [PMID: 19317891]
  35. Annu Rev Plant Biol. 2014;65:689-713 [PMID: 24313843]
  36. Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13808-13 [PMID: 15365181]
  37. Annu Rev Phytopathol. 2011;49:533-55 [PMID: 21438680]
  38. Mol Ecol. 2012 Oct;21(20):5124-37 [PMID: 22978555]
  39. Insect Biochem Mol Biol. 2010 Oct;40(10):699-712 [PMID: 20727970]
  40. J Chem Ecol. 2007 May;33(5):1041-8 [PMID: 17404816]
  41. Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):12976-81 [PMID: 17664416]
  42. Phytochemistry. 2011 Oct;72(14-15):1838-47 [PMID: 21658734]
  43. Annu Rev Phytopathol. 2005;43:205-27 [PMID: 16078883]
  44. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11917-22 [PMID: 23798396]
  45. New Phytol. 2009;182(2):314-330 [PMID: 19236579]
  46. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3820-5 [PMID: 10759552]
  47. Insect Biochem Mol Biol. 2014 Dec;55:31-8 [PMID: 25447033]
  48. Insect Biochem Mol Biol. 2012 Jun;42(6):426-34 [PMID: 22446106]
  49. Annu Rev Entomol. 2007;52:231-53 [PMID: 16925478]
  50. Trends Plant Sci. 2012 May;17(5):260-70 [PMID: 22498450]
  51. Appl Environ Microbiol. 2004 Jan;70(1):293-300 [PMID: 14711655]
  52. Plant Physiol Biochem. 2005 Dec;43(12):1095-102 [PMID: 16426854]
  53. Mol Plant Microbe Interact. 2013 Jan;26(1):67-74 [PMID: 23194342]
  54. Annu Rev Microbiol. 2009;63:541-56 [PMID: 19575558]
  55. Annu Rev Entomol. 2002;47:817-44 [PMID: 11729092]
  56. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10509-10513 [PMID: 16798877]
  57. J Invertebr Pathol. 2009 Apr;101(1):1-16 [PMID: 19269294]
  58. Environ Entomol. 2014 Jun;43(3):595-604 [PMID: 24780292]
  59. Annu Rev Entomol. 2010;55:375-97 [PMID: 19737083]
  60. Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12397-402 [PMID: 12213957]
  61. Plant Signal Behav. 2012 Oct 1;7(10):1306-20 [PMID: 22895106]
  62. Cell Tissue Res. 2001 Oct;306(1):167-78 [PMID: 11683178]
  63. Nature. 2005 Apr 7;434(7034):732-7 [PMID: 15815622]
  64. Heredity (Edinb). 2009 May;102(5):483-9 [PMID: 19223921]
  65. Trends Ecol Evol. 2012 Dec;27(12):705-11 [PMID: 22985943]
  66. Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12932-7 [PMID: 18725643]
  67. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1756-60 [PMID: 9990097]
  68. Genome Biol. 2013 Mar 27;14(3):R27 [PMID: 23537049]
  69. Annu Rev Entomol. 2004;49:71-92 [PMID: 14651457]
  70. Annu Rev Entomol. 2009;54:323-42 [PMID: 19067635]
  71. Microb Ecol. 2008 Jul;56(1):133-9 [PMID: 17973155]
  72. Biochim Biophys Acta. 2000 Mar 7;1477(1-2):112-21 [PMID: 10708853]
  73. ISME J. 2011 Jan;5(1):161-4 [PMID: 20613792]
  74. Annu Rev Entomol. 2003;48:455-84 [PMID: 12414737]
  75. Plant Foods Hum Nutr. 1993 Jan;43(1):45-54 [PMID: 8464844]
  76. PLoS One. 2011;6(7):e22629 [PMID: 21829470]
  77. Science. 1985 Feb 1;227(4686):527-8 [PMID: 3966160]
  78. Biotechnol Lett. 2006 Apr;28(8):593-9 [PMID: 16614898]
  79. J Chem Ecol. 2013 Jul;39(7):1003-6 [PMID: 23807433]
  80. Arch Insect Biochem Physiol. 2003 May;53(1):19-29 [PMID: 12701111]
  81. Plant Physiol. 2008 Jul;147(3):1358-68 [PMID: 18539774]
  82. ISME J. 2013 Nov;7(11):2147-58 [PMID: 23804150]
  83. Plant Mol Biol. 1998 Nov 1;38(4):623-32 [PMID: 9747807]
  84. Trends Plant Sci. 2009 Jun;14(6):310-7 [PMID: 19443266]
  85. Chembiochem. 2009 Sep 4;10(13):2223-9 [PMID: 19623597]
  86. J Chem Ecol. 2015 Jan;41(1):75-84 [PMID: 25475786]
  87. J Chem Ecol. 2008 Aug;34(8):1013-25 [PMID: 18581175]
  88. Microb Biotechnol. 2009 Jul;2(4):512-20 [PMID: 21255282]
  89. Microbiol Mol Biol Rev. 1998 Sep;62(3):597-635 [PMID: 9729602]
  90. Insect Biochem Mol Biol. 1997 Nov;27(11):887-900 [PMID: 9501415]
  91. Trends Plant Sci. 2012 Aug;17(8):478-86 [PMID: 22564542]
  92. Mol Plant Microbe Interact. 2009 Jan;22(1):18-30 [PMID: 19061399]
  93. Annu Rev Entomol. 2010;55:247-66 [PMID: 19728837]
  94. Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13213-8 [PMID: 19666594]
  95. J Invertebr Pathol. 2012 Sep 15;111(1):1-12 [PMID: 22617276]
  96. Arch Insect Biochem Physiol. 2015 Mar;88(3):192-202 [PMID: 25580929]
  97. Insect Biochem Mol Biol. 2014 Jun;49:1-13 [PMID: 24657889]
  98. PLoS One. 2012;7(7):e36978 [PMID: 22815679]
  99. Plant J. 2009 Jul;59(2):292-302 [PMID: 19392694]
  100. Insect Mol Biol. 2000 Aug;9(4):393-405 [PMID: 10971717]
  101. Annu Rev Phytopathol. 2005;43:491-521 [PMID: 16078893]
  102. Oecologia. 2000 Oct;125(1):66-71 [PMID: 28308223]
  103. Plant Physiol. 1999 Oct;121(2):325-32 [PMID: 10517823]
  104. Trends Plant Sci. 2010 Mar;15(3):167-75 [PMID: 20047849]
  105. Nature. 2001 Mar 29;410(6828):577-80 [PMID: 11279494]
  106. Molecules. 2011 Aug 03;16(8):6481-8 [PMID: 21814160]
  107. Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19237-42 [PMID: 16357201]
  108. Nature. 2002 Jul 4;418(6893):76-9 [PMID: 12097909]
  109. Annu Rev Entomol. 1998;43:571-94 [PMID: 15012398]
  110. Science. 2001 Mar 16;291(5511):2141-4 [PMID: 11251117]
  111. J Chem Ecol. 2011 Apr;37(4):378-86 [PMID: 21455676]
  112. Science. 1988 Apr 8;240(4849):207-10 [PMID: 17800917]
  113. Insect Biochem Mol Biol. 2002 Apr;32(4):405-15 [PMID: 11886775]
  114. Trends Plant Sci. 2011 Jun;16(6):294-9 [PMID: 21354852]
  115. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2036-40 [PMID: 11607516]
  116. Annu Rev Cell Dev Biol. 2012;28:489-521 [PMID: 22559264]
  117. Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):11002-7 [PMID: 22711827]
  118. Nat Rev Microbiol. 2008 Apr;6(4):302-13 [PMID: 18327270]
  119. Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1781-5 [PMID: 14749516]
  120. Phytochemistry. 2009 Sep;70(13-14):1589-99 [PMID: 19700177]
  121. Ecol Lett. 2012 Sep;15(9):1008-15 [PMID: 22715970]
  122. Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8894-9 [PMID: 16720701]
  123. J Insect Sci. 2015 Jul 23;15: [PMID: 26206894]
  124. Mol Plant Microbe Interact. 2009 Jul;22(7):763-72 [PMID: 19522558]
  125. Insect Biochem Mol Biol. 1998 Apr;28(4):229-37 [PMID: 9684331]
  126. Arch Insect Biochem Physiol. 2004 Mar;55(3):103-13 [PMID: 14981655]
  127. Phytochemistry. 2009 Oct-Nov;70(15-16):1899-909 [PMID: 19733867]
  128. J Biol Chem. 2012 Apr 20;287(17):14270-9 [PMID: 22375003]
  129. FEMS Microbiol Rev. 2013 Sep;37(5):699-735 [PMID: 23692388]
  130. J Insect Physiol. 2013 Feb;59(2):232-9 [PMID: 22771302]
  131. J Exp Bot. 2005 Apr;56(414):1229-37 [PMID: 15753113]
  132. Plant Physiol. 1996 Aug;111(4):1299-306 [PMID: 8756506]
  133. Curr Opin Plant Biol. 2005 Aug;8(4):450-6 [PMID: 15946893]
  134. Plant Cell. 2003 Mar;15(3):760-70 [PMID: 12615947]
  135. Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):583-7 [PMID: 23267060]
  136. Can J Microbiol. 2009 Nov;55(11):1250-60 [PMID: 19940933]
  137. FEMS Microbiol Lett. 2008 Jan;278(1):1-9 [PMID: 18034833]
  138. Proc Biol Sci. 2010 Aug 7;277(1692):2311-9 [PMID: 20356892]
  139. Can J Microbiol. 2000 Nov;46(11):1036-41 [PMID: 11109492]
  140. Plant Physiol. 2001 Jun;126(2):890-8 [PMID: 11402216]
  141. Phytochemistry. 2001 Nov;58(6):935-41 [PMID: 11684192]
  142. Novartis Found Symp. 1999;223:95-105; discussion 105-9, 160-5 [PMID: 10549550]
  143. PLoS One. 2010 Jun 28;5(6):e11339 [PMID: 20596533]
  144. Mol Plant Pathol. 2014 Feb;15(2):211-6 [PMID: 24112811]
  145. Proc Natl Acad Sci U S A. 2014 May 20;111(20):7349-54 [PMID: 24799680]
  146. Plant Physiol. 1995 Oct;109(2):667-674 [PMID: 12228621]
  147. Plant Physiol Biochem. 2007 Oct-Nov;45(10-11):858-65 [PMID: 17888672]

MeSH Term

Adaptation, Physiological
Animals
Biological Evolution
Coleoptera
Ecosystem
Herbivory
Plant Physiological Phenomena
Plants
Symbiosis

Word Cloud

Created with Highcharts 10.0.0insectsplantsplantinteractionsfactorsColeopteramaycoleopteranlargestdiverseInsectaordermultipleadaptationsfeedingcanimportantvariousdefensetoxicresponsesHerbivorousassociatedmicrobesalsointeractionamongbacteriaMAINCONCLUSION:characterizedInsect-associatedmicroorganismsmediatorsmodulatorsInteractionshighlycomplexinvolvemechanismsinitiateduponattackherbivorousincludingdevelopmentmorphologicalstructuressynthesissecondarymetabolitesvolatilesturnherbivoresadaptedsophisticatedovercomecontinueevolvedetoxifyphytocompoundssequesterpoisonousalteroverallgeneexpressionpatternMoreoverconsiderablyaffectmodifybenefithostPlantsfrequentlyendophytesactbioinsecticidesThereforeconsiderinfluencingcauseconsiderabledamageglobalcropproductionclassreviewaspectsdescribedfocusspeciesbacterialsymbiontshostsdemonstratemanycontributesuccessherbivoryThree-wayPlantresponsePlant–insectPlant–insect–microbeProteaseinhibitorsSymbiotic

Similar Articles

Cited By