Codon Adaptation of Plastid Genes.

Haruo Suzuki, Brian R Morton
Author Information
  1. Haruo Suzuki: Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi, Japan.
  2. Brian R Morton: Department of Biology, Barnard College, Columbia University, New York, New York, United States of America.

Abstract

Codon adaptation is codon usage bias that results from selective pressure to increase the translation efficiency of a gene. Codon adaptation has been studied across a wide range of genomes and some early analyses of plastids have shown evidence for codon adaptation in a limited set of highly expressed plastid genes. Here we study codon usage bias across all fully sequenced plastid genomes which includes representatives of the Rhodophyta, Alveolata, Cryptophyta, Euglenozoa, Glaucocystophyceae, Rhizaria, Stramenopiles and numerous lineages within the Viridiplantae, including Chlorophyta and Embryophyta. We show evidence that codon adaptation occurs in all genomes except for two, Theileria parva and Heicosporidium sp., both of which have highly reduced gene contents and no photosynthesis genes. We also show evidence that selection for codon adaptation increases the representation of the same set of codons, which we refer to as the adaptive codons, across this wide range of taxa, which is probably due to common features descended from the initial endosymbiont. We use various measures to estimate the relative strength of selection in the different lineages and show that it appears to be fairly strong in certain Stramenopiles and Chlorophyta lineages but relatively weak in many members of the Rhodophyta, Euglenozoa and Embryophyta. Given these results we propose that codon adaptation in plastids is widespread and displays the same general features as adaptation in eubacterial genomes.

References

  1. Zhongguo Zhong Yao Za Zhi. 2013 Mar;38(5):661-5 [PMID: 23724670]
  2. BMC Genomics. 2007 Oct 12;8:369 [PMID: 17935620]
  3. J Mol Evol. 1998 Apr;46(4):449-59 [PMID: 9541540]
  4. J Biol Chem. 1996 Mar 1;271(9):4632-9 [PMID: 8617725]
  5. Plant Physiol. 2012 Jun;159(2):579-91 [PMID: 22517411]
  6. J Mol Evol. 1998 Dec;47(6):691-6 [PMID: 9847411]
  7. DNA Res. 2008 Dec;15(6):357-65 [PMID: 18940873]
  8. J Mol Evol. 2007 Jun;64(6):605-13 [PMID: 17541677]
  9. Nucleic Acids Res. 1987 Feb 11;15(3):1281-95 [PMID: 3547335]
  10. Nat Rev Genet. 2011 Jan;12(1):32-42 [PMID: 21102527]
  11. Methods Mol Biol. 2014;1132:73-91 [PMID: 24599847]
  12. Annu Rev Genet. 2007;41:147-68 [PMID: 17600460]
  13. Genetics. 1994 Mar;136(3):927-35 [PMID: 8005445]
  14. PLoS One. 2014 Mar 19;9(3):e92501 [PMID: 24647560]
  15. Genomics Proteomics Bioinformatics. 2012 Aug;10(4):186-96 [PMID: 23084774]
  16. J Genet. 2005 Apr;84(1):55-62 [PMID: 15876584]
  17. Annu Rev Genet. 2008;42:287-99 [PMID: 18983258]
  18. Genetics. 1991 Nov;129(3):897-907 [PMID: 1752426]
  19. BMC Genomics. 2009 Dec 30;10:640 [PMID: 20042086]
  20. Bioinformatics. 2005 Feb 15;21(4):545-7 [PMID: 15374859]
  21. BMC Evol Biol. 2006 Apr 25;6:37 [PMID: 16638149]
  22. Plant Mol Biol. 1995 Aug;28(5):799-809 [PMID: 7640353]
  23. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5123-8 [PMID: 10220429]
  24. J Biol Chem. 1988 Oct 5;263(28):14302-7 [PMID: 3049574]
  25. Curr Issues Mol Biol. 2001 Oct;3(4):91-7 [PMID: 11719972]
  26. Mol Biol Evol. 2011 Jan;28(1):583-600 [PMID: 20805190]
  27. Annu Rev Genet. 2008;42:211-33 [PMID: 18605898]
  28. BMC Biol. 2006 Apr 21;4:12 [PMID: 16630350]
  29. Science. 2005 Jul 1;309(5731):134-7 [PMID: 15994558]
  30. Philos Trans R Soc Lond B Biol Sci. 2010 Apr 27;365(1544):1203-12 [PMID: 20308095]
  31. J Mol Evol. 2000 Oct;51(4):382-90 [PMID: 11040290]
  32. PLoS Genet. 2010 Sep 09;6(9):e1001115 [PMID: 20838599]
  33. EMBO J. 1987 Jun;6(6):1571-9 [PMID: 16453773]
  34. BMC Genomics. 2007 Jul 04;8:213 [PMID: 17610731]
  35. Curr Genomics. 2012 Mar;13(1):4-15 [PMID: 22942671]
  36. Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3304-9 [PMID: 14976253]
  37. Front Genet. 2014 May 01;5:114 [PMID: 24822057]
  38. Mol Biotechnol. 2011 Oct;49(2):116-28 [PMID: 21308422]
  39. Gene. 1990 Mar 1;87(1):23-9 [PMID: 2110097]
  40. Nucleic Acids Res. 1997 Sep 15;25(18):3681-6 [PMID: 9278490]
  41. J Mol Evol. 1997 Sep;45(3):227-31 [PMID: 9302315]
  42. Bioinformation. 2012;8(22):1096-104 [PMID: 23251044]
  43. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):996-1000 [PMID: 8577775]
  44. J Mol Evol. 1995 Nov;41(5):597-603 [PMID: 7490774]
  45. Mol Biol Evol. 2007 Oct;24(10):2169-79 [PMID: 17646257]
  46. Nucleic Acids Res. 2005 Feb 23;33(4):1141-53 [PMID: 15728743]
  47. J Mol Evol. 2003 May;56(5):616-29 [PMID: 12698298]
  48. Mol Biol Evol. 1996 May;13(5):660-5 [PMID: 8676740]
  49. Am J Bot. 2004 Oct;91(10):1481-93 [PMID: 21652304]
  50. Plant J. 2013 Sep;75(6):1062-74 [PMID: 23738654]
  51. Plant J. 2002 Jul;31(2):149-60 [PMID: 12121445]
  52. Genetics. 1994 Sep;138(1):227-34 [PMID: 8001789]
  53. Nature. 1987 Feb 19-25;325(6106):728-30 [PMID: 2434856]
  54. Evol Bioinform Online. 2007 Sep 06;3:159-68 [PMID: 19461976]
  55. PLoS Genet. 2010 Jan 15;6(1):e1000808 [PMID: 20090831]
  56. J Exp Bot. 2010 Jun;61(10):2535-7 [PMID: 20513654]
  57. J Mol Evol. 1993 Sep;37(3):273-80 [PMID: 8230251]
  58. Plant Mol Biol. 1990 May;14(5):805-14 [PMID: 2102858]
  59. Bioinformatics. 2003 Jan 22;19(2):305-6 [PMID: 12538262]
  60. Genome Res. 2004 Nov;14(11):2279-86 [PMID: 15479947]
  61. Mol Biol Evol. 1985 Jan;2(1):13-34 [PMID: 3916708]

MeSH Term

Adaptation, Physiological
Alveolata
Chlorophyta
Chloroplasts
Cluster Analysis
Codon
Cryptophyta
Embryophyta
Genome, Bacterial
Genome, Plastid
Plastids
RNA, Transfer
Reproducibility of Results
Rhizaria
Rhodophyta
Stramenopiles
Viridiplantae

Chemicals

Codon
RNA, Transfer

Word Cloud

Created with Highcharts 10.0.0adaptationcodongenomesCodonacrossevidencelineagesshowusagebiasresultsgenewiderangeplastidssethighlyplastidgenesRhodophytaEuglenozoaStramenopilesChlorophytaEmbryophytaselectioncodonsfeaturesselectivepressureincreasetranslationefficiencystudiedearlyanalysesshownlimitedexpressedstudyfullysequencedincludesrepresentativesAlveolataCryptophytaGlaucocystophyceaeRhizarianumerouswithinViridiplantaeincludingoccursexcepttwoTheileriaparvaHeicosporidiumspreducedcontentsphotosynthesisalsoincreasesrepresentationreferadaptivetaxaprobablyduecommondescendedinitialendosymbiontusevariousmeasuresestimaterelativestrengthdifferentappearsfairlystrongcertainrelativelyweakmanymembersGivenproposewidespreaddisplaysgeneraleubacterialAdaptationPlastidGenes

Similar Articles

Cited By (26)