Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes.

Yaqing Qie, Hengfeng Yuan, Christina A von Roemeling, Yuanxin Chen, Xiujie Liu, Kevin D Shih, Joshua A Knight, Han W Tun, Robert E Wharen, Wen Jiang, Betty Y S Kim
Author Information
  1. Yaqing Qie: Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA.
  2. Hengfeng Yuan: Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA.
  3. Christina A von Roemeling: Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA.
  4. Yuanxin Chen: Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA.
  5. Xiujie Liu: Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA.
  6. Kevin D Shih: Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA.
  7. Joshua A Knight: Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA.
  8. Han W Tun: Department of Hematology/Oncology, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA.
  9. Robert E Wharen: Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA.
  10. Wen Jiang: Department of Hematology/Oncology, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA.
  11. Betty Y S Kim: Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA.

Abstract

Nanomedicine is a burgeoning industry but an understanding of the interaction of nanomaterials with the immune system is critical for clinical translation. Macrophages play a fundamental role in the immune system by engulfing foreign particulates such as nanoparticles. When activated, macrophages form distinct phenotypic populations with unique immune functions, however the mechanism by which these polarized macrophages react to nanoparticles is unclear. Furthermore, strategies to selectively evade activated macrophage subpopulations are lacking. Here we demonstrate that stimulated macrophages possess higher phagocytic activities and that classically activated (M1) macrophages exhibit greater phagocytic capacity than alternatively activated (M2) macrophages. We show that modification of nanoparticles with polyethylene-glycol results in decreased clearance by all macrophage phenotypes, but importantly, coating nanoparticles with CD47 preferentially lowers phagocytic activity by the M1 phenotype. These results suggest that bio-inspired nanoparticle surface design may enable evasion of specific components of the immune system and provide a rational approach for developing immune tolerant nanomedicines.

References

  1. J Immunol. 1982 May;128(5):2281-6 [PMID: 7037963]
  2. J Biol Chem. 1985 Dec 5;260(28):15280-5 [PMID: 2866182]
  3. Science. 2010 Jan 15;327(5963):291-5 [PMID: 20075244]
  4. Nature. 1997 Mar 13;386(6621):181-6 [PMID: 9062191]
  5. ACS Nano. 2015 Sep 22;9(9):8689-96 [PMID: 26212564]
  6. Nat Nanotechnol. 2012 Dec;7(12):779-86 [PMID: 23212421]
  7. Front Biosci. 2008 Jan 01;13:453-61 [PMID: 17981560]
  8. Curr Protoc Immunol. 2008 Nov;Chapter 14:14.2.1-14.2.8 [PMID: 19016446]
  9. J Clin Invest. 2012 Mar;122(3):787-95 [PMID: 22378047]
  10. J Cell Biol. 2008 Mar 10;180(5):989-1003 [PMID: 18332220]
  11. Science. 2013 Jul 5;341(6141):88-91 [PMID: 23722425]
  12. Nat Nanotechnol. 2013 Oct;8(10):772-81 [PMID: 24056901]
  13. Biomacromolecules. 2012 Oct 8;13(10):3320-6 [PMID: 22963597]
  14. J Exp Med. 2007 Oct 29;204(11):2719-31 [PMID: 17954568]
  15. Cancer Res. 2008 Sep 1;68(17):7090-9 [PMID: 18757424]
  16. Nat Nanotechnol. 2016 Apr;11(4):372-7 [PMID: 26878141]
  17. Blood. 2012 Jun 7;119(23):5512-21 [PMID: 22427202]
  18. Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17253-8 [PMID: 24101477]
  19. J Leukoc Biol. 2007 Dec;82(6):1542-53 [PMID: 17855502]
  20. Arthritis Res Ther. 2014 Jul 01;16(4):R136 [PMID: 24984848]
  21. Immunity. 2005 Oct;23(4):344-6 [PMID: 16226499]
  22. Stroke. 2012 Nov;43(11):3063-70 [PMID: 22933588]
  23. Nat Rev Immunol. 2008 Dec;8(12):958-69 [PMID: 19029990]
  24. Nat Nanotechnol. 2008 Mar;3(3):145-50 [PMID: 18654486]
  25. J Clin Invest. 2013 Jul;123(7):3061-73 [PMID: 23778144]
  26. Annu Rev Immunol. 2002;20:197-216 [PMID: 11861602]
  27. Annu Rev Immunol. 2009;27:451-83 [PMID: 19105661]
  28. J Biol Chem. 2000 Dec 1;275(48):37984-92 [PMID: 10964914]
  29. Trends Immunol. 2004 Dec;25(12):677-86 [PMID: 15530839]
  30. J Leukoc Biol. 1991 Nov;50(5):471-8 [PMID: 1721083]
  31. Science. 2013 Feb 22;339(6122):971-5 [PMID: 23430657]
  32. Front Pharmacol. 2015 Mar 23;6:55 [PMID: 25852557]
  33. J Am Chem Soc. 2012 Feb 1;134(4):2139-47 [PMID: 22191645]
  34. Trends Cell Biol. 2001 Mar;11(3):130-5 [PMID: 11306274]
  35. ACS Nano. 2011 Mar 22;5(3):1657-69 [PMID: 21344890]
  36. Eur J Cancer. 2013 Oct;49(15):3320-34 [PMID: 23810249]
  37. ACS Nano. 2012 Mar 27;6(3):2665-78 [PMID: 22324868]
  38. CSH Protoc. 2008 Dec 01;2008:pdb.prot5080 [PMID: 21356739]
  39. J Cell Mol Med. 2010 Aug;14(8):2055-65 [PMID: 20629993]
  40. Nat Rev Immunol. 2013 Sep;13(9):621-34 [PMID: 23928573]
  41. J Immunol. 2006 Sep 15;177(6):3534-41 [PMID: 16951312]
  42. J Immunol. 1999 Apr 15;162(8):4606-13 [PMID: 10202000]
  43. J Leukoc Biol. 2011 Apr;89(4):557-63 [PMID: 21248152]
  44. Sci Rep. 2015 Dec 01;5:17040 [PMID: 26621190]
  45. Curr Opin Immunol. 2015 Aug;35:107-12 [PMID: 26172292]
  46. Nat Immunol. 2010 Oct;11(10):889-96 [PMID: 20856220]
  47. Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6662-7 [PMID: 22451913]
  48. Nat Rev Neurosci. 2014 May;15(5):300-12 [PMID: 24713688]
  49. Cell. 2009 Jul 23;138(2):271-85 [PMID: 19632178]
  50. EMBO J. 2009 Jul 22;28(14):2114-27 [PMID: 19536133]

MeSH Term

Animals
CD47 Antigen
Macrophage Activation
Macrophages
Mice, Inbred C57BL
Nanoparticles
Phagocytosis
Phenotype
Polyethylene Glycols
Polystyrenes

Chemicals

CD47 Antigen
Polystyrenes
Polyethylene Glycols

Word Cloud

Created with Highcharts 10.0.0immunenanoparticlesmacrophagesactivatedphagocyticsystemmacrophagedistinctM1modificationresultsclearancephenotypesevasionNanomedicineburgeoningindustryunderstandinginteractionnanomaterialscriticalclinicaltranslationMacrophagesplayfundamentalroleengulfingforeignparticulatesformphenotypicpopulationsuniquefunctionshowevermechanismpolarizedreactunclearFurthermorestrategiesselectivelyevadesubpopulationslackingdemonstratestimulatedpossesshigheractivitiesclassicallyexhibitgreatercapacityalternativelyM2showpolyethylene-glycoldecreasedimportantlycoatingCD47preferentiallylowersactivityphenotypesuggestbio-inspirednanoparticlesurfacedesignmayenablespecificcomponentsproviderationalapproachdevelopingtolerantnanomedicinesSurfaceenablesselective

Similar Articles

Cited By