Disruption of Adipose Rab10-Dependent Insulin Signaling Causes Hepatic Insulin Resistance.

Reema P Vazirani, Akanksha Verma, L Amanda Sadacca, Melanie S Buckman, Belen Picatoste, Muheeb Beg, Christopher Torsitano, Joanne H Bruno, Rajesh T Patel, Kotryna Simonyte, Joao P Camporez, Gabriela Moreira, Domenick J Falcone, Domenico Accili, Olivier Elemento, Gerald I Shulman, Barbara B Kahn, Timothy E McGraw
Author Information
  1. Reema P Vazirani: Department of Biochemistry, Weill Cornell Medical College, New York, NY.
  2. Akanksha Verma: Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY.
  3. L Amanda Sadacca: Department of Biochemistry, Weill Cornell Medical College, New York, NY.
  4. Melanie S Buckman: Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY.
  5. Belen Picatoste: Department of Biochemistry, Weill Cornell Medical College, New York, NY.
  6. Muheeb Beg: Department of Biochemistry, Weill Cornell Medical College, New York, NY.
  7. Christopher Torsitano: Department of Biochemistry, Weill Cornell Medical College, New York, NY.
  8. Joanne H Bruno: Department of Biochemistry, Weill Cornell Medical College, New York, NY.
  9. Rajesh T Patel: Department of Biochemistry, Weill Cornell Medical College, New York, NY.
  10. Kotryna Simonyte: Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
  11. Joao P Camporez: Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT.
  12. Gabriela Moreira: Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT.
  13. Domenick J Falcone: Department of Pathology, Weill Cornell Medical College, New York, NY.
  14. Domenico Accili: Department of Medicine and Naomi Berrie Diabetes Center, Columbia University, New York, NY.
  15. Olivier Elemento: Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY.
  16. Gerald I Shulman: Department of Pathology, Weill Cornell Medical College, New York, NY Howard Hughes Medical Institute, Yale University, New Haven, CT.
  17. Barbara B Kahn: Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
  18. Timothy E McGraw: Department of Biochemistry, Weill Cornell Medical College, New York, NY Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY temcgraw@med.cornell.edu.

Abstract

Insulin controls glucose uptake into adipose and muscle cells by regulating the amount of GLUT4 in the plasma membrane. The effect of insulin is to promote the translocation of intracellular GLUT4 to the plasma membrane. The small Rab GTPase, Rab10, is required for insulin-stimulated GLUT4 translocation in cultured 3T3-L1 adipocytes. Here we demonstrate that both insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane are reduced by about half in adipocytes from adipose-specific Rab10 knockout (KO) mice. These data demonstrate that the full effect of insulin on adipose glucose uptake is the integrated effect of Rab10-dependent and Rab10-independent pathways, establishing a divergence in insulin signal transduction to the regulation of GLUT4 trafficking. In adipose-specific Rab10 KO female mice, the partial inhibition of stimulated glucose uptake in adipocytes induces insulin resistance independent of diet challenge. During euglycemic-hyperinsulinemic clamp, there is no suppression of hepatic glucose production despite normal insulin suppression of plasma free fatty acids. The impact of incomplete disruption of stimulated adipocyte GLUT4 translocation on whole-body glucose homeostasis is driven by a near complete failure of insulin to suppress hepatic glucose production rather than a significant inhibition in muscle glucose uptake. These data underscore the physiological significance of the precise control of insulin-regulated trafficking in adipocytes.

References

  1. Nature. 2014 Apr 10;508(7495):258-62 [PMID: 24717514]
  2. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  3. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  4. Protein Cell. 2015 Jun;6(6):463-7 [PMID: 25860786]
  5. Cell Metab. 2011 Mar 2;13(3):249-59 [PMID: 21356515]
  6. Nucl Med Biol. 2004 Feb;31(2):241-50 [PMID: 15013490]
  7. Proc Natl Acad Sci U S A. 1980 May;77(5):2542-5 [PMID: 6771756]
  8. Cell Metab. 2007 Apr;5(4):293-303 [PMID: 17403373]
  9. Am J Physiol Endocrinol Metab. 2012 Nov 15;303(10):E1273-86 [PMID: 23011063]
  10. J Biol Chem. 2008 Apr 4;283(14 ):9187-95 [PMID: 18258599]
  11. Mol Biol Cell. 2002 Jul;13(7):2421-35 [PMID: 12134080]
  12. J Biol Chem. 1991 Jun 15;266(17 ):11341-6 [PMID: 2040638]
  13. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  14. J Biol Chem. 2002 Jun 21;277(25):22115-8 [PMID: 11994271]
  15. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  16. Biochemistry. 1995 Nov 28;34(47):15523-31 [PMID: 7492554]
  17. Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13806-11 [PMID: 20643919]
  18. Nat Commun. 2013;4:2005 [PMID: 23770993]
  19. Mol Biol Cell. 2001 Nov;12(11):3489-501 [PMID: 11694583]
  20. Biochem J. 2005 Oct 1;391(Pt 1):87-93 [PMID: 15971998]
  21. Cell Metab. 2005 Oct;2(4):263-72 [PMID: 16213228]
  22. Endocrinology. 1997 Aug;138(8):3395-401 [PMID: 9231793]
  23. Diabetes. 1997 Feb;46(2):215-23 [PMID: 9000697]
  24. Diabetologia. 2015 Aug;58(8):1877-86 [PMID: 26024738]
  25. Endocrinology. 2013 Mar;154(3):1021-8 [PMID: 23364948]
  26. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  27. Biochem Biophys Res Commun. 2001 Sep 21;287(2):445-54 [PMID: 11554749]
  28. J Biol Chem. 1994 Jul 1;269(26):17516-24 [PMID: 8021259]
  29. J Biol Chem. 2007 Mar 9;282(10):7710-22 [PMID: 17202135]
  30. Mol Biol Cell. 2013 Oct;24(19):3115-22 [PMID: 23966466]
  31. Biochem J. 2013 Jan 15;449(2):479-89 [PMID: 23078342]
  32. Dev Cell. 2013 Jan 28;24(2):159-68 [PMID: 23369713]
  33. J Am Soc Nephrol. 2015 Nov;26(11):2765-76 [PMID: 25788531]
  34. J Biol Chem. 1995 Nov 10;270(45):26746-9 [PMID: 7592907]
  35. J Biol Chem. 2010 Jan 1;285(1):104-14 [PMID: 19864425]
  36. J Biol Chem. 1980 May 25;255(10):4758-62 [PMID: 6989818]
  37. Nat Med. 2001 Aug;7(8):947-53 [PMID: 11479628]
  38. Mol Biol Cell. 2004 Feb;15(2):870-82 [PMID: 14595108]
  39. J Clin Endocrinol Metab. 2001 Nov;86(11):5450-6 [PMID: 11701721]
  40. Mol Biol Cell. 2004 Oct;15(10 ):4406-15 [PMID: 15254270]
  41. J Biol Chem. 2008 Oct 3;283(40):27208-19 [PMID: 18650435]
  42. J Biol Chem. 2003 Apr 25;278(17 ):14599-602 [PMID: 12637568]
  43. J Cell Biol. 2012 Aug 20;198(4):545-60 [PMID: 22908308]
  44. Nature. 2001 Feb 8;409(6821):729-33 [PMID: 11217863]
  45. PLoS One. 2015 Apr 29;10(4):e0124491 [PMID: 25923736]
  46. Nat Cell Biol. 2013 Feb;15(2):169-78 [PMID: 23263280]
  47. Nature. 2005 Jul 21;436(7049):356-62 [PMID: 16034410]
  48. Diabetes. 2013 Sep;62(9):3114-9 [PMID: 23801575]
  49. Nature. 2012 Apr 19;484(7394):333-8 [PMID: 22466288]
  50. J Biol Chem. 2005 Nov 11;280(45):37803-13 [PMID: 16154996]
  51. Nat Med. 2000 Aug;6(8):924-8 [PMID: 10932232]
  52. J Biol Chem. 2010 Apr 9;285(15):11348-56 [PMID: 20093359]

Grants

  1. R01 DK052852/NIDDK NIH HHS
  2. F32 DK095532/NIDDK NIH HHS
  3. U24 DK059635/NIDDK NIH HHS
  4. R37 DK058282/NIDDK NIH HHS
  5. R56 DK052852/NIDDK NIH HHS
  6. P30 DK057521/NIDDK NIH HHS
  7. P30 DK026687/NIDDK NIH HHS
  8. T32 GM007739/NIGMS NIH HHS
  9. R01 DK098002/NIDDK NIH HHS

MeSH Term

3T3-L1 Cells
Adipocytes
Animals
Cell Membrane
Female
Glucose
Glucose Transporter Type 4
Insulin
Insulin Resistance
Liver
Mice
Mice, Inbred C57BL
Mice, Knockout
Muscle, Skeletal
Protein Transport
Signal Transduction
rab GTP-Binding Proteins

Chemicals

Glucose Transporter Type 4
Insulin
Rab10 protein, mouse
rab GTP-Binding Proteins
Glucose

Word Cloud

Created with Highcharts 10.0.0glucoseGLUT4insulinuptakeplasmatranslocationadipocytesInsulinmembraneeffectRab10adiposemuscleinsulin-stimulateddemonstrateadipose-specificKOmicedatatraffickinginhibitionstimulatedsuppressionhepaticproductioncontrolscellsregulatingamountpromoteintracellularsmallRabGTPaserequiredcultured3T3-L1reducedhalfknockoutfullintegratedRab10-dependentRab10-independentpathwaysestablishingdivergencesignaltransductionregulationfemalepartialinducesresistanceindependentdietchallengeeuglycemic-hyperinsulinemicclampdespitenormalfreefattyacidsimpactincompletedisruptionadipocytewhole-bodyhomeostasisdrivennearcompletefailuresuppressrathersignificantunderscorephysiologicalsignificanceprecisecontrolinsulin-regulatedDisruptionAdiposeRab10-DependentSignalingCausesHepaticResistance

Similar Articles

Cited By