Prediction and Quantification of Splice Events from RNA-Seq Data.

Leonard D Goldstein, Yi Cao, Gregoire Pau, Michael Lawrence, Thomas D Wu, Somasekar Seshagiri, Robert Gentleman
Author Information
  1. Leonard D Goldstein: Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA, United States of America.
  2. Yi Cao: Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA, United States of America.
  3. Gregoire Pau: Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA, United States of America.
  4. Michael Lawrence: Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA, United States of America.
  5. Thomas D Wu: Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA, United States of America.
  6. Somasekar Seshagiri: Department of Molecular Biology, Genentech Inc., South San Francisco, CA, United States of America.
  7. Robert Gentleman: Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA, United States of America.

Abstract

Analysis of splice variants from short read RNA-seq data remains a challenging problem. Here we present a novel method for the genome-guided prediction and quantification of splice events from RNA-seq data, which enables the analysis of unannotated and complex splice events. Splice junctions and exons are predicted from reads mapped to a reference genome and are assembled into a genome-wide splice graph. Splice events are identified recursively from the graph and are quantified locally based on reads extending across the start or end of each splice variant. We assess prediction accuracy based on simulated and real RNA-seq data, and illustrate how different read aligners (GSNAP, HISAT2, STAR, TopHat2) affect prediction results. We validate our approach for quantification based on simulated data, and compare local estimates of relative splice variant usage with those from other methods (MISO, Cufflinks) based on simulated and real RNA-seq data. In a proof-of-concept study of splice variants in 16 normal human tissues (Illumina Body Map 2.0) we identify 249 internal exons that belong to known genes but are not related to annotated exons. Using independent RNA samples from 14 matched normal human tissues, we validate 9/9 of these exons by RT-PCR and 216/249 by paired-end RNA-seq (2 x 250 bp). These results indicate that de novo prediction of splice variants remains beneficial even in well-studied systems. An implementation of our method is freely available as an R/Bioconductor package [Formula: see text].

References

  1. Nature. 2010 Apr 1;464(7289):768-72 [PMID: 20220758]
  2. Nat Genet. 2008 Dec;40(12):1413-5 [PMID: 18978789]
  3. PLoS Comput Biol. 2013;9(8):e1003118 [PMID: 23950696]
  4. Nat Methods. 2013 Dec;10(12):1177-84 [PMID: 24185837]
  5. Genome Res. 2005 Aug;15(8):1034-50 [PMID: 16024819]
  6. Nature. 2012 Sep 6;489(7414):101-8 [PMID: 22955620]
  7. Nature. 2008 Nov 27;456(7221):470-6 [PMID: 18978772]
  8. Nat Methods. 2013 Dec;10(12):1185-91 [PMID: 24185836]
  9. F1000Res. 2013 Sep 16;2:188 [PMID: 24555089]
  10. Genome Biol. 2004;5(10):R80 [PMID: 15461798]
  11. Bioinformatics. 2010 Apr 1;26(7):873-81 [PMID: 20147302]
  12. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  13. Bioinformatics. 1998;14(9):755-63 [PMID: 9918945]
  14. Methods Mol Biol. 2014;1126:357-97 [PMID: 24549677]
  15. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  16. Nucleic Acids Res. 2012 Nov 1;40(20):10073-83 [PMID: 22962361]
  17. Nat Rev Genet. 2011 Sep 16;12(10):715-29 [PMID: 21921927]
  18. Genome Res. 2011 Feb;21(2):193-202 [PMID: 20921232]
  19. Bioinformatics. 2002;18 Suppl 1:S181-8 [PMID: 12169546]
  20. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  21. Trends Biochem Sci. 1998 Jun;23(6):198-9 [PMID: 9644970]
  22. Nat Methods. 2010 Dec;7(12):1009-15 [PMID: 21057496]
  23. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D493-6 [PMID: 14681465]
  24. Nucleic Acids Res. 2012 Apr;40(8):e61 [PMID: 22266656]
  25. Nat Rev Genet. 2010 Jan;11(1):75-87 [PMID: 20019688]
  26. Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30 [PMID: 24288371]
  27. Nucleic Acids Res. 2013 Jan;41(2):e39 [PMID: 23155066]
  28. Nature. 2013 Sep 26;501(7468):506-11 [PMID: 24037378]
  29. Genome Res. 2002 Jun;12(6):996-1006 [PMID: 12045153]
  30. Genome Res. 2012 Sep;22(9):1760-74 [PMID: 22955987]
  31. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  32. Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]

MeSH Term

Algorithms
Alternative Splicing
Computational Biology
Exons
Humans
RNA
RNA Splicing
Sequence Analysis, RNA
Software

Chemicals

RNA

Word Cloud

Created with Highcharts 10.0.0spliceRNA-seqdatapredictionexonsbasedvariantseventsSplicesimulatedreadremainsmethodquantificationreadsgraphvariantrealresultsvalidatenormalhumantissues2Analysisshortchallengingproblempresentnovelgenome-guidedenablesanalysisunannotatedcomplexjunctionspredictedmappedreferencegenomeassembledgenome-wideidentifiedrecursivelyquantifiedlocallyextendingacrossstartendassessaccuracyillustratedifferentalignersGSNAPHISAT2STARTopHat2affectapproachcomparelocalestimatesrelativeusagemethodsMISOCufflinksproof-of-conceptstudy16IlluminaBodyMap0identify249internalbelongknowngenesrelatedannotatedUsingindependentRNAsamples14matched9/9RT-PCR216/249paired-endx250bpindicatedenovobeneficialevenwell-studiedsystemsimplementationfreelyavailableR/Bioconductorpackage[Formula:seetext]PredictionQuantificationEventsRNA-SeqData

Similar Articles

Cited By