Transcriptome Analysis Reveals a Signature Profile for Tick-Borne Flavivirus Persistence in HEK 293T Cells.

Luwanika Mlera, Jennifer Lam, Danielle K Offerdahl, Craig Martens, Daniel Sturdevant, Charles V Turner, Stephen F Porcella, Marshall E Bloom
Author Information
  1. Luwanika Mlera: Laboratory of Virology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA Luwanika.Mlera@nih.gov.
  2. Jennifer Lam: Laboratory of Virology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
  3. Danielle K Offerdahl: Laboratory of Virology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
  4. Craig Martens: Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA.
  5. Daniel Sturdevant: Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA.
  6. Charles V Turner: Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA.
  7. Stephen F Porcella: Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA.
  8. Marshall E Bloom: Laboratory of Virology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.

Abstract

Tick-borne flaviviruses (TBFVs) cause febrile illnesses, which may progress to severe encephalitis and/or death in humans globally. Most people who recover from severe acute disease suffer from debilitating neurological sequelae, which may be due to viral persistence, infection-induced neurological cell damage, host response, or some combination of these. Acute TBFV infection of human embryonic kidney (HEK) 293T cells in vitro results in the death of >95% of infected cells by day 5. However, replacing cell growth medium allows surviving cells to repopulate and become persistently infected for extended periods of time. The mechanisms responsible for initiation and maintenance of viral persistence remain vague. We subjected the HEK 293T cell transcriptome to deep sequencing to identify genes differentially expressed during acute infection and persistent infection. A total of 451 genes showed unique significant differential expression levels in persistently infected cells relative to the acute phase of infection. Ingenuity Pathway Analysis results suggested that the expression of prosurvival oncogenes AKT2 and ERBB2 was upregulated in persistently infected cells, whereas proapoptotic genes, such as Bad and the beta interferon 1 (IFN-β1) gene, were downregulated. Genes encoding antiviral cytokines such as the CCL5, tumor necrosis factor alpha (TNF-α), and CXCL10 genes were upregulated during the acute phase, but the same genes were relatively quiescent in persistently infected cells. Exogenous induction of apoptosis demonstrated that persistently infected cells were resistant to apoptosis in a dose-dependent manner. In summary, the differential transcriptome profiles of acute-phase compared to persistently infected HEK 293T cells demonstrated an evasion of apoptosis, which may be critical for a chronic TBFV infection state. These results provide a basis for further study of the mechanisms of TBFV persistence.
IMPORTANCE: Tick-borne flaviviruses (TBFVs) cause life-threatening encephalitic disease in humans worldwide. Some people who recover from severe disease may suffer prolonged neurological symptoms due to either virus- or host response-induced cell damage or a combination of the two that are linked to viral persistence. By examining the genes that are significantly differentially expressed in acute TBFV infection versus persistent TBFV infection, we may be able to find the molecular basis of viral persistence. Here we used deep sequencing of the host cell transcriptome to discover that the expression levels of prosurvival genes were upregulated in persistently infected cells relative to acute TBFV infections whereas the expression levels of genes that promote programmed cell death were downregulated. In addition, persistently infected cells were also resistant to exogenous chemical induction of cell death, in a dose-dependent manner, compared to uninfected cells. Our results pave the way for further studies aimed at understanding the precise mechanisms of TBFV persistence.

References

  1. PLoS One. 2009;4(5):e5612 [PMID: 19440298]
  2. J Virol. 2006 Oct;80(19):9349-60 [PMID: 16973541]
  3. Discov Med. 2010 Feb;9(45):145-52 [PMID: 20193641]
  4. Am J Med Genet A. 2013 Dec;161A(12 ):2931-7 [PMID: 24039187]
  5. Virus Res. 2007 Mar;124(1-2):139-50 [PMID: 17134784]
  6. J Virol. 2005 Jul;79(13):8388-99 [PMID: 15956583]
  7. J Neurovirol. 2014 Dec;20(6):539-60 [PMID: 25287260]
  8. J Virol. 2003 Jun;77(12):7106-12 [PMID: 12768030]
  9. Euro Surveill. 2008 Jun 26;13(26):null [PMID: 18761916]
  10. EMBO J. 2003 Jun 2;22(11):2604-13 [PMID: 12773377]
  11. Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]
  12. J Gen Virol. 2008 Jan;89(Pt 1):1-47 [PMID: 18089727]
  13. J Virol. 2006 Dec;80(23 ):11868-80 [PMID: 16987981]
  14. Science. 2001 Jun 1;292(5522):1728-31 [PMID: 11387480]
  15. Arch Virol Suppl. 2004;(18):201-5 [PMID: 15119775]
  16. J Biol Chem. 2010 Jan 15;285(3):1577-81 [PMID: 19926786]
  17. Cell Biochem Funct. 2007 Jan-Feb;25(1):1-13 [PMID: 16944546]
  18. Science. 2006 May 12;312(5775):879-82 [PMID: 16690858]
  19. MBio. 2014 Mar 11;5(2):e00902-14 [PMID: 24618253]
  20. Vet Res. 2010 Nov-Dec;41(6):67 [PMID: 21188801]
  21. Nat Biotechnol. 2013 Jan;31(1):46-53 [PMID: 23222703]
  22. J Virol. 2005 Oct;79(20):12828-39 [PMID: 16188985]
  23. Euro Surveill. 2012 Mar 22;17(12):null [PMID: 22490310]
  24. J Biol Chem. 2000 Aug 18;275(33):25858-64 [PMID: 10835427]
  25. Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):9014-9 [PMID: 15956184]
  26. J Biol Chem. 2003 Feb 7;278(6):3694-704 [PMID: 12446712]
  27. Clin Infect Dis. 1999 Apr;28(4):882-90 [PMID: 10825054]
  28. Cell Death Differ. 2001 Feb;8(2):113-26 [PMID: 11313713]
  29. Emerg Infect Dis. 2013 May;19(5):806-8 [PMID: 23697658]
  30. Nat Rev Microbiol. 2008 Sep;6(9):699-708 [PMID: 18587411]
  31. Cell. 1989 Oct 6;59(1):55-65 [PMID: 2551507]
  32. J Gen Virol. 2009 Aug;90(Pt 8):1781-94 [PMID: 19420159]
  33. Annu Rev Microbiol. 1990;44:649-88 [PMID: 2174669]
  34. J Virol. 2003 Jun;77(12):7143-9 [PMID: 12768036]
  35. Methods Mol Biol. 2012;887:41-7 [PMID: 22566045]
  36. MBio. 2015 Jun 04;6(3):e00614 [PMID: 26045539]
  37. Cell Death Differ. 2003 Jan;10 Suppl 1:S48-58 [PMID: 12655346]
  38. J Immunol. 2001 Oct 15;167(8):4553-9 [PMID: 11591783]
  39. Antiviral Res. 2010 Aug;87(2):125-48 [PMID: 19945487]
  40. Lancet. 2008 May 31;371(9627):1861-71 [PMID: 18514730]
  41. Nat Protoc. 2013 Aug;8(8):1551-66 [PMID: 23868073]
  42. Trans R Soc Trop Med Hyg. 1997 Mar-Apr;91(2):179-81 [PMID: 9196762]
  43. J Gen Virol. 1986 Feb;67 ( Pt 2):381-5 [PMID: 3003242]
  44. Bioinformatics. 2014 Feb 15;30(4):523-30 [PMID: 24336805]
  45. Curr Cancer Drug Targets. 2008 Aug;8(5):421-30 [PMID: 18690848]
  46. J Virol. 2002 May;76(9):4162-71 [PMID: 11932381]
  47. Clin Med Res. 2003 Apr;1(2):145-50 [PMID: 15931302]
  48. Toxicol Pathol. 2007 Jun;35(4):495-516 [PMID: 17562483]
  49. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D284-8 [PMID: 15608197]
  50. J Med Virol. 1993 Aug;40(4):326-9 [PMID: 8228925]
  51. Clin Cancer Res. 2012 Oct 1;18(19):5234-46 [PMID: 22899799]
  52. J Virol. 2000 Apr;74(7):3399-403 [PMID: 10708457]
  53. Virus Res. 2001 Aug;76(2):161-9 [PMID: 11410315]
  54. Antiviral Res. 2003 Jan;57(1-2):129-46 [PMID: 12615309]
  55. Clin Microbiol Infect. 2004 Dec;10(12):1040-55 [PMID: 15606630]
  56. Genome Res. 2003 Sep;13(9):2129-41 [PMID: 12952881]
  57. PLoS One. 2011 Jan 31;6(1):e14614 [PMID: 21297943]
  58. Emerg Infect Dis. 2009 Sep;15(9):1347-50 [PMID: 19788800]
  59. J Cell Sci. 2003 Oct 15;116(Pt 20):4077-85 [PMID: 12972501]
  60. J Gen Virol. 1986 May;67 ( Pt 5):945-7 [PMID: 3009693]
  61. J Biol Chem. 2002 Jan 4;277(1):492-501 [PMID: 11687577]
  62. Virology. 1996 Mar 1;217(1):220-9 [PMID: 8599206]
  63. Pathog Dis. 2014 Jul;71(2):137-63 [PMID: 24737600]
  64. J Virol. 1977 Nov;24(2):580-9 [PMID: 916028]
  65. J Virol. 2003 Jan;77(1):25-36 [PMID: 12477807]
  66. Cell. 2002 Mar 8;108(5):717-25 [PMID: 11893341]

MeSH Term

Animals
Apoptosis
Cytokines
Flavivirus
Gene Expression Profiling
HEK293 Cells
High-Throughput Nucleotide Sequencing
Host-Pathogen Interactions
Humans
Immunity, Innate
Interferon-beta
Proto-Oncogene Proteins c-akt
Receptor, ErbB-2
Signal Transduction
Ticks
Transcriptome
Up-Regulation

Chemicals

Cytokines
Interferon-beta
ERBB2 protein, human
Receptor, ErbB-2
AKT2 protein, human
Proto-Oncogene Proteins c-akt

Word Cloud

Created with Highcharts 10.0.0cellsinfectedpersistentlygenescellTBFVinfectionacutepersistencemaydeathviralHEK293TresultsexpressionseverediseaseneurologicalhostmechanismstranscriptomelevelsupregulatedapoptosisTick-borneflavivirusesTBFVscausehumanspeoplerecoversufferduedamagecombinationdeepsequencingdifferentiallyexpressedpersistentdifferentialrelativephaseAnalysisprosurvivalwhereasdownregulatedinductiondemonstratedresistantdose-dependentmannercomparedbasisfebrileillnessesprogressencephalitisand/orgloballydebilitatingsequelaeinfection-inducedresponseAcutehumanembryonickidneyvitro>95%day5Howeverreplacinggrowthmediumallowssurvivingrepopulatebecomeextendedperiodstimeresponsibleinitiationmaintenanceremainvaguesubjectedidentifytotal451showeduniquesignificantIngenuityPathwaysuggestedoncogenesAKT2ERBB2proapoptoticBadbetainterferon1IFN-β1geneGenesencodingantiviralcytokinesCCL5tumornecrosisfactoralphaTNF-αCXCL10relativelyquiescentExogenoussummaryprofilesacute-phaseevasioncriticalchronicstateprovidestudyIMPORTANCE:life-threateningencephaliticworldwideprolongedsymptomseithervirus-response-inducedtwolinkedexaminingsignificantlyversusablefindmolecularuseddiscoverinfectionspromoteprogrammedadditionalsoexogenouschemicaluninfectedpavewaystudiesaimedunderstandingpreciseTranscriptomeRevealsSignatureProfileTick-BorneFlavivirusPersistenceCells

Similar Articles

Cited By