Temporal Expression of Peripheral Blood Leukocyte Biomarkers in a Macaca fascicularis Infection Model of Tuberculosis; Comparison with Human Datasets and Analysis with Parametric/Non-parametric Tools for Improved Diagnostic Biomarker Identification.

Sajid Javed, Leanne Marsay, Alice Wareham, Kuiama S Lewandowski, Ann Williams, Michael J Dennis, Sally Sharpe, Richard Vipond, Nigel Silman, Graham Ball, Karen E Kempsell
Author Information
  1. Sajid Javed: Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom.
  2. Leanne Marsay: Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom.
  3. Alice Wareham: Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom.
  4. Kuiama S Lewandowski: Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom.
  5. Ann Williams: Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom.
  6. Michael J Dennis: Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom.
  7. Sally Sharpe: Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom.
  8. Richard Vipond: Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom.
  9. Nigel Silman: Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom.
  10. Graham Ball: School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, United Kingdom.
  11. Karen E Kempsell: Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom. ORCID

Abstract

A temporal study of gene expression in peripheral blood leukocytes (PBLs) from a Mycobacterium tuberculosis primary, pulmonary challenge model Macaca fascicularis has been conducted. PBL samples were taken prior to challenge and at one, two, four and six weeks post-challenge and labelled, purified RNAs hybridised to Operon Human Genome AROS V4.0 slides. Data analyses revealed a large number of differentially regulated gene entities, which exhibited temporal profiles of expression across the time course study. Further data refinements identified groups of key markers showing group-specific expression patterns, with a substantial reprogramming event evident at the four to six week interval. Selected statistically-significant gene entities from this study and other immune and apoptotic markers were validated using qPCR, which confirmed many of the results obtained using microarray hybridisation. These showed evidence of a step-change in gene expression from an 'early' FOS-associated response, to a 'late' predominantly type I interferon-driven response, with coincident reduction of expression of other markers. Loss of T-cell-associate marker expression was observed in responsive animals, with concordant elevation of markers which may be associated with a myeloid suppressor cell phenotype e.g. CD163. The animals in the study were of different lineages and these Chinese and Mauritian cynomolgous macaque lines showed clear evidence of differing susceptibilities to Tuberculosis challenge. We determined a number of key differences in response profiles between the groups, particularly in expression of T-cell and apoptotic makers, amongst others. These have provided interesting insights into innate susceptibility related to different host `phenotypes. Using a combination of parametric and non-parametric artificial neural network analyses we have identified key genes and regulatory pathways which may be important in early and adaptive responses to TB. Using comparisons between data outputs of each analytical pipeline and comparisons with previously published Human TB datasets, we have delineated a subset of gene entities which may be of use for biomarker diagnostic test development.

References

  1. J Virol. 2011 Jan;85(2):784-94 [PMID: 21084479]
  2. Lupus. 2008 Sep;17(9):805-13 [PMID: 18755862]
  3. J Infect Dis. 2005 Feb 1;191(3):400-9 [PMID: 15633100]
  4. Nature. 2010 Aug 19;466(7309):973-7 [PMID: 20725040]
  5. AIDS Res Hum Retroviruses. 2003 May;19(5):369-87 [PMID: 12803996]
  6. J Immunol. 2007 Jun 15;178(12):7632-9 [PMID: 17548599]
  7. PLoS One. 2013 Aug 05;8(8):e70630 [PMID: 23940611]
  8. Gene. 2014 Nov 10;551(2):255-60 [PMID: 25192803]
  9. Genes Immun. 2006 Sep;7(6):503-13 [PMID: 16826236]
  10. J Infect Dis. 2013 Aug 15;208(4):541-3 [PMID: 23661796]
  11. Biomed Res Int. 2013;2013:562984 [PMID: 24063007]
  12. Eur J Public Health. 2014 Aug;24 Suppl 1:47-56 [PMID: 25107998]
  13. Proc Natl Acad Sci U S A. 2012 May 15;109(20):7853-8 [PMID: 22547807]
  14. PLoS One. 2013 Aug 02;8(8):e71245 [PMID: 23936496]
  15. Tuberculosis (Edinb). 2012 Sep;92(5):388-96 [PMID: 22683183]
  16. Mol Cell Biol. 2014 Jan;34(2):196-209 [PMID: 24190970]
  17. Nat Biotechnol. 2000 Apr;18(4):457-9 [PMID: 10748532]
  18. Immunobiology. 2014 Sep;219(9):695-703 [PMID: 24916404]
  19. Nat Rev Immunol. 2014 Oct;14(10):653-66 [PMID: 25234143]
  20. J Immunol. 2014 Jan 15;192(2):771-81 [PMID: 24337748]
  21. Clin Dev Immunol. 2011;2011:814943 [PMID: 21234341]
  22. Immunity. 2009 Jul 17;31(1):122-30 [PMID: 19592277]
  23. Elife. 2014 Sep 03;3:e04066 [PMID: 25187624]
  24. PLoS One. 2011 Mar 08;6(3):e17186 [PMID: 21408152]
  25. Mayo Clin Proc. 2011 Apr;86(4):348-61 [PMID: 21454737]
  26. Breast Cancer Res Treat. 2010 Feb;120(1):83-93 [PMID: 19347577]
  27. Nat Rev Immunol. 2013 Jul;13(7):499-509 [PMID: 23787991]
  28. Probl Tuberk. 2002;(7):43-8 [PMID: 12561644]
  29. J Biol Chem. 2011 Mar 4;286(9):7257-66 [PMID: 21190939]
  30. Int J Tuberc Lung Dis. 2012 Sep;16(9):1140-8 [PMID: 22871324]
  31. BMC Public Health. 2011 Feb 22;11:127 [PMID: 21342493]
  32. Immunology. 2001 Nov;104(3):269-77 [PMID: 11722641]
  33. PLoS One. 2011 Mar 31;6(3):e18367 [PMID: 21483832]
  34. PLoS One. 2014 Apr 17;9(4):e95220 [PMID: 24743303]
  35. J Comp Pathol. 2015 Feb-Apr;152(2-3):217-26 [PMID: 25481611]
  36. Proteomics Clin Appl. 2010 Sep;4(8-9):682-96 [PMID: 21137086]
  37. J Biol Chem. 2014 Nov 28;289(48):33481-91 [PMID: 25320078]
  38. BMC Infect Dis. 2009 Jun 11;9:91 [PMID: 19519917]
  39. Cell Cycle. 2014;13(11):1717-26 [PMID: 24675889]
  40. Nat Rev Immunol. 2009 Mar;9(3):162-74 [PMID: 19197294]
  41. Haematologica. 2012 Feb;97(2):219-26 [PMID: 21993666]
  42. Immunol Lett. 2014 Mar-Apr;158(1-2):66-72 [PMID: 24333340]
  43. PLoS One. 2012;7(10):e46191 [PMID: 23056259]
  44. J Immunol. 2009 Jul 15;183(2):937-44 [PMID: 19553533]
  45. J Nutr. 2007 Dec;137(12):2696-700 [PMID: 18029486]
  46. PLoS One. 2011;6(10):e26938 [PMID: 22046420]
  47. J Intern Med. 2014 May;275(5):467-80 [PMID: 24635488]
  48. PLoS One. 2014 Apr 16;9(4):e94949 [PMID: 24740417]
  49. Cytogenet Cell Genet. 1995;69(3-4):223-5 [PMID: 7698018]
  50. Br J Biomed Sci. 2015;72(1):32-41 [PMID: 25906489]
  51. J Immunol. 2007 Dec 1;179(11):7729-40 [PMID: 18025219]
  52. J Allergy Clin Immunol. 2015 Mar;135(3):598-608 [PMID: 25592986]
  53. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  54. PLoS One. 2014 Feb 25;9(2):e89925 [PMID: 24587128]
  55. Clin Microbiol Infect. 2014 Apr;20(4):O230-8 [PMID: 24205913]
  56. Brief Bioinform. 2009 May;10(3):315-29 [PMID: 19307287]
  57. Immunol Cell Biol. 2013 Feb;91(2):149-58 [PMID: 23207282]
  58. PLoS One. 2014 Mar 19;9(3):e92340 [PMID: 24647646]
  59. Atherosclerosis. 2011 Feb;214(2):345-9 [PMID: 21167486]
  60. PLoS One. 2010 Aug 31;5(8):e12266 [PMID: 20824205]
  61. N Engl J Med. 2014 May 1;370(18):1712-23 [PMID: 24785206]
  62. CMAJ. 2011 Sep 6;183(12):E824-925 [PMID: 20530168]
  63. Lancet. 2010 May 29;375(9729):1920-37 [PMID: 20488517]
  64. Annu Rev Immunol. 2013;31:475-527 [PMID: 23516984]
  65. Eur J Clin Microbiol Infect Dis. 2010 Oct;29(10):1291-5 [PMID: 20544370]
  66. PLoS One. 2011 Apr 04;6(4):e17601 [PMID: 21483732]
  67. PLoS One. 2014 Feb 04;9(2):e88149 [PMID: 24505407]
  68. BMJ. 1993 Sep 25;307(6907):759-61 [PMID: 8219945]
  69. Exp Cell Res. 2012 Mar 10;318(5):509-20 [PMID: 22245583]
  70. PLoS One. 2013 Sep 17;8(9):e74893 [PMID: 24069364]
  71. J Investig Dermatol Symp Proc. 2013 Dec;16(1):S28-30 [PMID: 24326545]
  72. PLoS One. 2014 May 29;9(5):e97953 [PMID: 24874925]
  73. Methods. 2013 Jan;59(1):32-46 [PMID: 22975077]
  74. BMC Public Health. 2008 May 12;8:158 [PMID: 18474110]
  75. Mol Immunol. 2005 Mar;42(5):627-41 [PMID: 15607822]
  76. J Biol Chem. 2013 Mar 22;288(12 ):8691-701 [PMID: 23329834]
  77. Cell Signal. 2014 May;26(5):942-50 [PMID: 24462705]
  78. Mucosal Immunol. 2012 Nov;5(6):681-90 [PMID: 22692453]
  79. Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15190-5 [PMID: 15477590]
  80. Genes Immun. 2015 Jul-Aug;16(5):347-55 [PMID: 26043170]
  81. Lancet Infect Dis. 2014 Apr;14(4):267-9 [PMID: 24670623]
  82. Lancet Infect Dis. 2011 Jun;11(6):435-44 [PMID: 21514236]
  83. BMC Infect Dis. 2011 Jan 04;11:3 [PMID: 21205318]
  84. BMC Infect Dis. 2014 May 13;14:257 [PMID: 24885723]
  85. Clin Vaccine Immunol. 2010 Aug;17(8):1170-82 [PMID: 20534795]
  86. Lancet. 2010 Nov 6;376(9752):1539-40; author reply 1540 [PMID: 21056759]
  87. Genes Immun. 2011 Jan;12(1):15-22 [PMID: 20861863]
  88. Nucleic Acids Res. 2009 Apr;37(6):e45 [PMID: 19237396]
  89. J Infect Dis. 2012 May 15;205 Suppl 2:S147-58 [PMID: 22496353]
  90. Eur J Immunol. 2003 Jun;33(6):1461-4 [PMID: 12778462]
  91. Curr Opin Immunol. 2013 Oct;25(5):579-87 [PMID: 24021227]
  92. PLoS Med. 2013 Oct;10(10):e1001538 [PMID: 24167453]
  93. BMC Public Health. 2008 Jan 14;8:15 [PMID: 18194573]

Grants

  1. 103348/Department of Health [UK]

MeSH Term

Animals
Apoptosis
Biomarkers
Databases, Genetic
Disease Models, Animal
Female
Gene Expression Regulation
Humans
Immunity, Innate
Leukocytes
Macaca fascicularis
Male
Mycobacterium tuberculosis
Tuberculosis, Pulmonary

Chemicals

Biomarkers

Word Cloud

Created with Highcharts 10.0.0expressiongenestudymarkerschallengeHumanentitieskeyresponsemaytemporalMacacafascicularisfoursixanalysesnumberprofilesdataidentifiedgroupsapoptoticusingshowedevidenceanimalsdifferentTuberculosisUsingTBcomparisonsperipheralbloodleukocytesPBLsMycobacteriumtuberculosisprimarypulmonarymodelconductedPBLsamplestakenprioronetwoweekspost-challengelabelledpurifiedRNAshybridisedOperonGenomeAROSV40slidesDatarevealedlargedifferentiallyregulatedexhibitedacrosstimecourserefinementsshowinggroup-specificpatternssubstantialreprogrammingeventevidentweekintervalSelectedstatistically-significantimmunevalidatedqPCRconfirmedmanyresultsobtainedmicroarrayhybridisationstep-change'early'FOS-associated'late'predominantlytypeinterferon-drivencoincidentreductionLossT-cell-associatemarkerobservedresponsiveconcordantelevationassociatedmyeloidsuppressorcellphenotypeegCD163lineagesChineseMauritiancynomolgousmacaquelinescleardifferingsusceptibilitiesdetermineddifferencesparticularlyT-cellmakersamongstothersprovidedinterestinginsightsinnatesusceptibilityrelatedhost`phenotypescombinationparametricnon-parametricartificialneuralnetworkgenesregulatorypathwaysimportantearlyadaptiveresponsesoutputsanalyticalpipelinepreviouslypublisheddatasetsdelineatedsubsetusebiomarkerdiagnostictestdevelopmentTemporalExpressionPeripheralBloodLeukocyteBiomarkersInfectionModelComparisonDatasetsAnalysisParametric/Non-parametricToolsImprovedDiagnosticBiomarkerIdentification

Similar Articles

Cited By