Killer cell immunoglobulin-like receptor and human leukocyte antigen gene profiles in a cohort of HIV-infected Mexican Mestizos.

Daniela Garrido-Rodríguez, Santiago Ávila-Ríos, Claudia García-Morales, Humberto Valenzuela-Ponce, Christopher Ormsby, Helena Reyes-Gopar, Juan Carlos Fernandez-Lopez, Gustavo Reyes-Terán
Author Information
  1. Daniela Garrido-Rodríguez: National Institute of Respiratory Diseases, Centre for Research in Infectious Diseases, Calzada de Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico.
  2. Santiago Ávila-Ríos: National Institute of Respiratory Diseases, Centre for Research in Infectious Diseases, Calzada de Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico.
  3. Claudia García-Morales: National Institute of Respiratory Diseases, Centre for Research in Infectious Diseases, Calzada de Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico.
  4. Humberto Valenzuela-Ponce: National Institute of Respiratory Diseases, Centre for Research in Infectious Diseases, Calzada de Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico.
  5. Christopher Ormsby: National Institute of Respiratory Diseases, Centre for Research in Infectious Diseases, Calzada de Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico.
  6. Helena Reyes-Gopar: National Institute of Respiratory Diseases, Centre for Research in Infectious Diseases, Calzada de Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico.
  7. Juan Carlos Fernandez-Lopez: National Institute of Genomic Medicine, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico.
  8. Gustavo Reyes-Terán: National Institute of Respiratory Diseases, Centre for Research in Infectious Diseases, Calzada de Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico. gustavo.reyesteran@gmail.com.

Abstract

Killer cell immunoglobulin-like receptors (KIRs) represent the most polymorphic genes responsible for natural killer cell function, while human leukocyte antigen (HLA) class I molecules define and restrict cytotoxic T lymphocyte responses. Specific KIR, HLA, or KIR-HLA combinations have been implicated in the outcome of human immunodeficiency virus (HIV) disease. The remarkable polymorphism of KIR and HLA genes warrants descriptive gene frequency studies in different populations, as well as their impact on HIV disease progression in different immunogenetic contexts. We report KIR and HLA class I gene profiles of 511 unrelated HIV-infected Mexican Mestizo individuals from 18 states for whom genetic ancestry proportions were assessed. KIR and HLA gene profiles were compared between individuals from the north and central-south regions of the country and between individuals with higher European (EUR) or Amerindian (AMI) genetic ancestry component. A total of 65 KIR genotypes were observed, 11 harboring novel KIR gene combinations. A total of 164 HLA alleles were observed: 43 HLA-A, 87 HLA-B, and 34 HLA-C. Differences in the distribution of 12 HLA alleles were observed between individuals with higher AMI or EUR ancestry components (p < 0.05, q < 0.2). After correcting for genetic ancestry, only individual HLA alleles were associated with HIV disease progression, including a novel association with A*02:06, an Amerindian HLA allele associated with lower CD4+ T cell counts. No KIR effects were significant. Our results highlight the advantages of considering a detailed genetic stratification within populations when studying genetic profiles that could be implicated in disease-association studies.

Keywords

References

  1. Immunity. 1997 Dec;7(6):753-63 [PMID: 9430221]
  2. Immunogenetics. 2010 Dec;62(11-12):761-5 [PMID: 20857097]
  3. Genetics. 2003 Aug;164(4):1567-87 [PMID: 12930761]
  4. PLoS Pathog. 2007 Apr;3(4):e43 [PMID: 17447840]
  5. PLoS Genet. 2006 Dec;2(12):e190 [PMID: 17194218]
  6. Immunology. 2011 Mar;132(3):315-25 [PMID: 21214544]
  7. Genetics. 2000 Jun;155(2):945-59 [PMID: 10835412]
  8. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14326-31 [PMID: 9826699]
  9. J Immunol. 2007 Jan 1;178(1):235-41 [PMID: 17182560]
  10. Nucleic Acids Res. 2011 Jan;39(Database issue):D913-9 [PMID: 21062830]
  11. Nature. 2007 Oct 18;449(7164):851-61 [PMID: 17943122]
  12. Immunity. 1999 Jun;10(6):661-71 [PMID: 10403641]
  13. J Acquir Immune Defic Syndr. 2011 Jul 1;57(3):181-9 [PMID: 21407082]
  14. Genes Immun. 2008 Jul;9(5):470-80 [PMID: 18509341]
  15. Nat Genet. 2002 Aug;31(4):429-34 [PMID: 12134147]
  16. Mol Immunol. 2008 Feb;45(4):1171-8 [PMID: 17904223]
  17. Immunogenetics. 2015 Aug;67(8):413-24 [PMID: 26033692]
  18. AIDS. 2013 Jun 1;27(9):1473-81 [PMID: 23945505]
  19. J Exp Med. 2007 Nov 26;204(12):3027-36 [PMID: 18025129]
  20. AIDS. 2008 Mar 12;22(5):595-9 [PMID: 18317000]
  21. J Virol. 2008 May;82(10):4785-92 [PMID: 18305035]
  22. BMC Infect Dis. 2013 Sep 02;13:405 [PMID: 24059286]
  23. Mol Ecol Resour. 2009 Sep;9(5):1322-32 [PMID: 21564903]
  24. Genomics. 1996 Jul 1;35(1):270-2 [PMID: 8661137]
  25. J Immunol. 2007 Jan 15;178(2):647-51 [PMID: 17202323]
  26. Science. 2010 Dec 10;330(6010):1551-7 [PMID: 21051598]
  27. J Immunol. 2007 Jul 15;179(2):854-68 [PMID: 17617576]
  28. Hum Immunol. 2001 Jun;62(6):645-50 [PMID: 11390040]
  29. Nat Genet. 2007 Jun;39(6):733-40 [PMID: 17496894]
  30. J Immunol. 2006 Nov 15;177(10 ):6588-92 [PMID: 17082569]
  31. Mol Immunol. 2005 Feb;42(4):557-60 [PMID: 15607813]
  32. Mol Ecol Notes. 2007 Jul 1;7(4):574-578 [PMID: 18784791]
  33. Science. 2014 Jun 13;344(6189):1280-5 [PMID: 24926019]
  34. Nat Rev Immunol. 2008 Aug;8(8):619-30 [PMID: 18617886]
  35. Immunogenetics. 2012 Oct;64(10):719-37 [PMID: 22752190]
  36. PLoS One. 2011 Feb 14;6(2):e17043 [PMID: 21347267]
  37. Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18692-7 [PMID: 19837691]
  38. PLoS Comput Biol. 2008 Feb 29;4(2):e1000016 [PMID: 18392148]
  39. Annu Rev Immunol. 2013;31:227-58 [PMID: 23516982]
  40. Am J Hum Genet. 2007 Sep;81(3):559-75 [PMID: 17701901]
  41. Annu Rev Immunol. 1998;16:359-93 [PMID: 9597134]
  42. Tissue Antigens. 2007 Apr;69 Suppl 1:125-9 [PMID: 17445185]
  43. Hum Immunol. 2006 Jan-Feb;67(1-2):85-93 [PMID: 16698429]
  44. Nat Immunol. 2001 Jan;2(1):23-7 [PMID: 11135574]
  45. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5140-5 [PMID: 11309482]
  46. Tissue Antigens. 2010 Jul;76(1):9-17 [PMID: 20331834]
  47. PLoS Biol. 2011 Nov;9(11):e1001208 [PMID: 22140359]
  48. Immunity. 2012 Sep 21;37(3):426-40 [PMID: 22999948]
  49. Immunogenetics. 2012 Sep;64(9):653-62 [PMID: 22652695]
  50. Immunogenetics. 2011 Sep;63(9):561-75 [PMID: 21638211]
  51. Immunogenetics. 2014 Nov;66(11):597-611 [PMID: 25139336]
  52. Immunol Today. 2000 Sep;21(9):420-2 [PMID: 10953091]
  53. Genes Immun. 2005 Dec;6(8):683-90 [PMID: 16121209]
  54. PLoS Genet. 2014 Sep 25;10(9):e1004572 [PMID: 25254375]

MeSH Term

Adult
Alleles
CD4-Positive T-Lymphocytes
Disease Progression
Female
Gene Frequency
Genotype
HIV Infections
HIV-1
HLA Antigens
Humans
Killer Cells, Natural
Male
Mexican Americans
Mexico
Polymorphism, Genetic
Receptors, KIR
Young Adult

Chemicals

HLA Antigens
Receptors, KIR

Word Cloud

Created with Highcharts 10.0.0HLAKIRgeneticgenecellprofilesindividualsancestryhumanHIVdiseaseMexicanallelesKillerimmunoglobulin-likegenesleukocyteantigenclassTcombinationsimplicatedimmunodeficiencyvirusstudiesdifferentpopulationsprogressionHIV-infectedMestizoproportionshigherEURAmerindianAMItotalobservednovelassociatedreceptorsKIRsrepresentpolymorphicresponsiblenaturalkillerfunctionmoleculesdefinerestrictcytotoxiclymphocyteresponsesSpecificKIR-HLAoutcomeremarkablepolymorphismwarrantsdescriptivefrequencywellimpactimmunogeneticcontextsreport511unrelated18statesassessedcomparednorthcentral-southregionscountryEuropeancomponent65genotypes11harboring164observed:43HLA-A87HLA-B34HLA-CDifferencesdistribution12componentsp < 005q < 02correctingindividualincludingassociationA*02:06allelelowerCD4+countseffectssignificantresultshighlightadvantagesconsideringdetailedstratificationwithinstudyingdisease-associationreceptorcohortMestizosAncestryHumanImmunogenetics

Similar Articles

Cited By